nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
Allies not enemies—creating a more empathetic and uplifting patient experience through technology and art
|
Tagliaferri, Luca |
|
|
201 |
3 |
p. 316-332 |
artikel |
2 |
Artificial intelligence for response prediction and personalisation in radiation oncology
|
Zwanenburg, Alex |
|
|
201 |
3 |
p. 266-273 |
artikel |
3 |
Artificial intelligence for treatment delivery: image-guided radiotherapy
|
Rabe, Moritz |
|
|
201 |
3 |
p. 283-297 |
artikel |
4 |
Deep learning for autosegmentation for radiotherapy treatment planning: State-of-the-art and novel perspectives
|
Erdur, Ayhan Can |
|
|
201 |
3 |
p. 236-254 |
artikel |
5 |
Enhancing the prediction of symptomatic radiation pneumonitis for locally advanced non-small-cell lung cancer by combining 3D deep learning-derived imaging features with dose–volume metrics: a two-center study
|
Kong, Yan |
|
|
201 |
3 |
p. 274-282 |
artikel |
6 |
Gekommen, um zu bleiben? Nivolumab in der Erstlinientherapie des Hodgkin-Lymphoms im fortgeschrittenen Stadium – eine strahlentherapeutische Nachlese der SWOG-S1826-Studie
|
Oertel, Michael |
|
|
201 |
3 |
p. 349-351 |
artikel |
7 |
Kann die stereotaktische Radiotherapie der Makula die Lebensqualität bei der altersbedingten feuchten Makuladegeneration (STAR Trial) verbessern?
|
Göller, Stephanie |
|
|
201 |
3 |
p. 346-348 |
artikel |
8 |
MR-linac: role of artificial intelligence and automation
|
Psoroulas, Serena |
|
|
201 |
3 |
p. 298-305 |
artikel |
9 |
Nested CNN architecture for three-dimensional dose distribution prediction in tomotherapy for prostate cancer
|
Zamanian, Maryam |
|
|
201 |
3 |
p. 306-315 |
artikel |
10 |
Olaparib bei biochemischem Rezidiv des High-risk-Prostatakarzinoms nach Prostatektomie
|
Hintelmann, Katharina |
|
|
201 |
3 |
p. 343-345 |
artikel |
11 |
Patient- and clinician-based evaluation of large language models for patient education in prostate cancer radiotherapy
|
Trapp, Christian |
|
|
201 |
3 |
p. 333-342 |
artikel |
12 |
Principles of artificial intelligence in radiooncology
|
Huang, Yixing |
|
|
201 |
3 |
p. 210-235 |
artikel |
13 |
The increasing role of artificial intelligence in radiation oncology: how should we navigate it?
|
Putz, Florian |
|
|
201 |
3 |
p. 207-209 |
artikel |
14 |
The Segment Anything foundation model achieves favorable brain tumor auto-segmentation accuracy in MRI to support radiotherapy treatment planning
|
Putz, Florian |
|
|
201 |
3 |
p. 255-265 |
artikel |