Alzheimer’s disease (AD) is defined histopathologically by beta-amyloid (Aβ) senile plaques andneurofibrillary tangles (NFTs) composed of hyperphosphorylated tau. The question as to which of theselesions takes precedence in AD pathology has long been an issue of debate. The amyloid cascadehypothesis, currently the predominant hypothesis, considers Aβ peptide to be responsible for the majorneurodegeneration observed in AD while the cytoskeleton hypothesis states that tauhyperphosphorylation and subsequent aggregation may be central to the neurodegeneration observed inAD. This review focuses on tau mutations, phosphorylation sites, tau isoforms and theneurohistopathology of AD, and three other tauopathies to demonstrate that disease progression andneuronal loss in AD correlate also with pathological tau and not just amyloid deposition. Although tau isat the center of all these neurodegenerative diseases, there exist differences in morphology, isoforms,phosphorylation sites and mutations in each of these tauopathies. The tauopathies discussed in thisreview are AD, progressive supranuclear palsy, Pick’s disease, and frontotemporal dementia andParkinsonism linked to chromosome 17.