Digital Library
Close Browse articles from a journal
 
<< previous    next >>
     Journal description
       All volumes of the corresponding journal
         All issues of the corresponding volume
           All articles of the corresponding issues
                                       Details for article 6 of 8 found articles
 
 
  On the generalized radial matrices and a conjecture of Marcus and Sandy
 
 
Title: On the generalized radial matrices and a conjecture of Marcus and Sandy
Author: Tam, Tin-Yau
Appeared in: Linear & multilinear algebra
Paging: Volume 19 (1986) nr. 1 pages 11-20
Year: 1986-04
Contents: Given an n×n complex matrix A wiih eigenvalues λj,1≤j≤n and positive integers m,k such that m≤k≤n, we define [image omitted]  where Qk,n denotes the set of all strictly increasing sequences of k integers chosen from {1,…,n} and Em denotes the elementary symmetric function of degree m. We also define [image omitted]  where Cm(A) is the mth compound of A, and [image omitted]  We say that the matrix A is generalized (mk)-radial if [image omitted] . In this note we characterize the generalized (mk)-radial matrices. It turns out that is equivalent to [image omitted] . We also give a counterexample to a conjecture of Marcus and Sandy and this example also shows that [image omitted]  is not equivalent to [image omitted] .
Publisher: Taylor & Francis
Source file: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details for article 6 of 8 found articles
 
<< previous    next >>
 
 Koninklijke Bibliotheek - National Library of the Netherlands