Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 13 van 16 gevonden artikelen
 
 
  Selection of importance weights for monte carlo estimation of normalizing constants
 
 
Titel: Selection of importance weights for monte carlo estimation of normalizing constants
Auteur: Lasinio, G. Jona-
Piccioni, M.
Ramponi, A.
Verschenen in: Communications in statistics
Paginering: Jaargang 28 (1999) nr. 2 pagina's 441-462
Jaar: 1999
Inhoud: This paper concerns the problem of estimating normalizing constants for multivariate densities. We first compare the well known technique of Importance Sampling (IS) with another technique that we call Importance Weighting (IW), which has been recently proposed by Gelfand and Dey (1994). Both techniques require the choice of a suitable density. Whereas it is quite well known that the asymptotic variance of an IS estimator is proportional to the chi-square divergence of the IS density w.r.t. the density of interest, we point out that for the asymptotic variance of the corresponding IW estimator the same results holds, except that the arguments of the divergence are interchanged. This suggests how to adapt to the problem of choosing an IW density procedures which have been already proposed for the choice of the IS density. In particular we show this feature for the algorithms proposed by Geweke (1989) and West (1993). The resulting procedures are illustrated with some examples.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 13 van 16 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland