Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 2 van 7 gevonden artikelen
 
 
  Derivatives of the Characteristic Root of a Symmetric or a Hermitian Matrix with Two Applications in Multivariate Analysis
 
 
Titel: Derivatives of the Characteristic Root of a Symmetric or a Hermitian Matrix with Two Applications in Multivariate Analysis
Auteur: Sugiura, Nariaki
Verschenen in: Communications in statistics
Paginering: Jaargang 1 (1973) nr. 5 pagina's 393-417
Jaar: 1973
Inhoud: Derivatives of the α th largest characteristic root of a symmetric matrix S = (srs) with respect to srs (r ≦ s) at S = Λ = diag(λ1, …, λp) are given in this paper, where λ1 ≧ … ≧ λp and λα is assumed to be simple. The first application lies in deriving the partial differential equation for zonal polynomials given by James [13] and further new partial differential equation of fourth degree for zonal polynomials. The second application lies in giving the asymptotic expansions of the distribution of the α th largest root of a Wishart matrix having Wp(n, Σ), when α th root of Σ is simple. It is given by normal distribution function and its derivatives. If the α th root is not simple, non-normal limiting distribution is obtained when p = 2. The similar results for the derivatives of a Hermitian matrix and for a root of a complex Wishart matrix are also given.
Uitgever: Taylor & Francis
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 2 van 7 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland