Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 5 van 7 gevonden artikelen
 
 
  Learning quantifiable associations via principal sparse non-negative matrix factorization
 
 
Titel: Learning quantifiable associations via principal sparse non-negative matrix factorization
Auteur: Chenyong Hu
Benyu Zhang
Yongji Wang
Shuicheng Yan
Zheng Chen
Qing Wang
Qiang Yang
Verschenen in: Intelligent data analysis
Paginering: Jaargang 9 (2005) nr. 6 pagina's 603-620
Jaar: 2005-12-19
Inhoud: Association rules are traditionally designed to capture statistical relationship among itemsets in a given database. To additionally capture the quantitative association knowledge, Korn et.al. recently propose a paradigm named Ratio Rules [6] for quantifiable data mining. However, their approach is mainly based on Principle Component Analysis (PCA), and as a result, it cannot guarantee that the ratio coefficients are non-negative. This may lead to serious problems in the rules' application. In this paper, we propose a new method, called Principal Sparse Non-negative Matrix Factorization (PSNMF), for learning the associations between itemsets in the form of Ratio Rules. In addition, we provide a support measurement to weigh the importance of each rule for the entire dataset. Experiments on several datasets illustrate that the proposed method performs well for discovering latent associations between itemsets in large datasets.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 5 van 7 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland