Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 4 van 7 gevonden artikelen
 
 
  Identifying noisy features with the Pairwise Attribute Noise Detection Algorithm
 
 
Titel: Identifying noisy features with the Pairwise Attribute Noise Detection Algorithm
Auteur: Taghi M. Khoshgoftaar
Jason Van Hulse
Verschenen in: Intelligent data analysis
Paginering: Jaargang 9 (2005) nr. 6 pagina's 589-602
Jaar: 2005-12-19
Inhoud: A critical issue in data mining and knowledge discovery is the problem of data quality. Quantifying the presence of noise in dataset is often used as an indicator of data quality. While existing works have mostly focused on detecting class noise or mislabeling errors, very limited attention has been given to finding noisy attributes or features. Prior work in the area of noise handling has concentrated on the detection of observations that contain noise in either the attributes or class labels. Methodologies that provide insight into the quality of an attribute can provide valuable knowledge to a domain expert when data analysis is being performed. We present a novel methodology for detecting noisy attributes. The procedure utilizes our recently proposed Pairwise Attribute Noise Detection Algorithm (PANDA) for detecting instances with attribute noise. From a data analyst's point of view, our approach provides a viable solution to: "Given a dataset, which attribute(s) contains the most noise?". The proposed methodology is investigated with multiple case studies of a real-world software measurement dataset. The empirical study is investigated by injecting simulated noise into one or more attributes of a dataset that has no class noise. Based on a domain expert's inspection of the obtained results, the effectiveness of our technique for detecting noisy attributes is demonstrated.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 4 van 7 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland