Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige   
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 6 van 6 gevonden artikelen
 
 
  The class imbalance problem: A systematic study
 
 
Titel: The class imbalance problem: A systematic study
Auteur: Nathalie Japkowicz
Shaju Stephen
Verschenen in: Intelligent data analysis
Paginering: Jaargang 6 (2002) nr. 5 pagina's 429-449
Jaar: 2002-12-28
Inhoud: In machine learning problems, differences in prior class probabilities -- or class imbalances -- have been reported to hinder the performance of some standard classifiers, such as decision trees. This paper presents a systematic study aimed at answering three different questions. First, we attempt to understand the nature of the class imbalance problem by establishing a relationship between concept complexity, size of the training set and class imbalance level. Second, we discuss several basic re-sampling or cost-modifying methods previously proposed to deal with the class imbalance problem and compare their effectiveness. The results obtained by such methods on artificial domains are linked to results in real-world domains. Finally, we investigate the assumption that the class imbalance problem does not only affect decision tree systems but also affects other classification systems such as Neural Networks and Support Vector Machines.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 6 van 6 gevonden artikelen
 
<< vorige   
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland