Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 5 van 6 gevonden artikelen
 
 
  Maintenance of discovered sequential patterns for record deletion
 
 
Titel: Maintenance of discovered sequential patterns for record deletion
Auteur: Ching-Yao Wang
Tzung-Pei Hong
Shian-Shyong Tseng
Verschenen in: Intelligent data analysis
Paginering: Jaargang 6 (2002) nr. 5 pagina's 399-410
Jaar: 2002-12-28
Inhoud: Mining sequential patterns from temporal transaction databases attempts to find customer behavior models and to assist managers in making correct and effective decisions. The sequential patterns discovered may, however, become invalid or inappropriate when databases are updated. Conventional approaches may re-mine entire databases to get correct sequential patterns for maintenance. However, when a database is massive in size, this will require considerable computation time. In the past, Lin and Lee proposed an incremental mining algorithm for maintenance of sequential patterns as new records were inserted. In addition to record insertion, record deletion is also commonly seen in real-world applications. Processing record deletion is, however, different from processing record insertion. The former can even be thought of the contrary of the latter. In this paper, we thus attempt to design an effective maintenance algorithm for sequential patterns as records are deleted. Our proposed algorithm utilizes previously discovered large sequences in the maintenance process, thus reducing numbers of rescanning databases. In addition, rescanning requirement depends on decreased numbers of customers, which are usually zero when numbers of deleted records are not large. This characteristic is especially useful for dynamic database mining.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 5 van 6 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland