Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 2 van 5 gevonden artikelen
 
 
  Dependency-based feature selection for clustering symbolic data
 
 
Titel: Dependency-based feature selection for clustering symbolic data
Auteur: Luis Talavera
Verschenen in: Intelligent data analysis
Paginering: Jaargang 4 (2001) nr. 1 pagina's 19-28
Jaar: 2001-04-01
Inhoud: Feature selection is a central problem in data analysis that have received a significant amount of attention from several disciplines, such as machine learning or pattern recognition. However, most of the research has been addressed towards supervised tasks, paying little attention to unsupervised learning. In this paper, we introduce an unsupervised feature selection method for symbolic clustering tasks. Our method is based upon the assumption that, in the absence of class labels, we can deem as irrelevant those features that exhibit low dependencies with the rest of features. Experiments with several data sets demonstrate that the proposed approach is able to detect completely irrelevant features and that, additionally, it removes other features without significantly hurting the performance of the clustering algorithm.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 2 van 5 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland