Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 6 van 11 gevonden artikelen
 
 
  Estimating harmfulness of class imbalance by scatter matrix based class separability measure
 
 
Titel: Estimating harmfulness of class imbalance by scatter matrix based class separability measure
Auteur: Yu, Hualong
Ni, Jun
Xu, Sen
Qin, Bin
Jv, Hengrong
Verschenen in: Intelligent data analysis
Paginering: Jaargang 18 (2014) nr. 2 pagina's 203-216
Jaar: 2014-03-04
Inhoud: In many real world applications, class imbalance problems occur frequently, causing great underestimation for the classification performance of minority classes. In recent years, much effective solutions have been proposed to address this problem. However, the recent research found that not all skewed classification tasks are harmful and carrying out class imbalance learning methods on those unharmful ones can hardly improve and even degenerate classification performance, meanwhile increase training time to a large extent. Therefore, it is essential to design an efficient criterion to pre-estimate the harmfulness of class imbalance when we encounter skewed classification tasks. In this study, we explore the reason of harmfulness produced by class imbalance and propose a simple and ingenious strategy using scatter matrix based class separability measure to estimate the harmfulness of class imbalance with merely using training samples. The experimental results indicate that the proposed strategy can quantificationally estimate the damage for imbalanced classification tasks and provide priori information to guide us to select appropriate classification methods. Moreover, the computing complexity of the proposed strategy is quite low, thus it is practical in real-world applications.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 6 van 11 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland