Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige   
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 11 van 11 gevonden artikelen
 
 
  Unsupervised density-based behavior change detection in data streams
 
 
Titel: Unsupervised density-based behavior change detection in data streams
Auteur: Vallim, Rosane M.M.
Filho, José A. Andrade
de Mello, Rodrigo F.
de Carvalho, André C. P. L. F.
Gama, João
Verschenen in: Intelligent data analysis
Paginering: Jaargang 18 (2014) nr. 2 pagina's 181-201
Jaar: 2014-03-04
Inhoud: The ability to detect changes in the data distribution is an important issue in Data Stream mining. Detecting changes in data distribution allows the adaptation of a previously learned model to accommodate the most recent data and, therefore, improve its prediction capability. This paper proposes a framework for non-supervised automatic change detection in Data Streams called M-DBScan. This framework is composed of a density-based clustering step followed by a novelty detection procedure based on entropy level measures. This work uses two different types of entropy measures, where one considers the spatial distribution of data while the other models temporal relations between observations in the stream. The performance of the method is assessed in a set of experiments comparing M-DBScan with a proximity-based approach. Experimental results provide important insight on how to design change detection mechanisms for streams.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 11 van 11 gevonden artikelen
 
<< vorige   
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland