Digitale Bibliotheek
Sluiten Bladeren door artikelen uit een tijdschrift
 
<< vorige    volgende >>
     Tijdschrift beschrijving
       Alle jaargangen van het bijbehorende tijdschrift
         Alle afleveringen van het bijbehorende jaargang
           Alle artikelen van de bijbehorende aflevering
                                       Details van artikel 2 van 8 gevonden artikelen
 
 
  Evolutionary data analysis for the class imbalance problem
 
 
Titel: Evolutionary data analysis for the class imbalance problem
Auteur: Khoshgoftaar, Taghi M.
Seliya, Naeem
Drown, Dennis J.
Verschenen in: Intelligent data analysis
Paginering: Jaargang 14 (2010) nr. 1 pagina's 69-88
Jaar: 2010-02-04
Inhoud: Class imbalance, where the classes in a dataset are not represented equally, is a common occurrence in machine learning. Classification models built with such datasets are often not practical since most machine learning algorithms would tend to perform poorly on the minority class instances. We present a unique evolutionary computing-based data sampling approach as an effective solution for the class imbalance problem. The genetic algorithm-based approach, Evolutionary Sampling, works as a majority undersampling technique where instances from the majority class are selectively removed. This preserves the relative integrity of the majority class while maintaining the original minority class group. Our research prototype, eVann, also implements genetic-algorithm-based optimization of modeling parameters for the machine learning algorithms considered in our study. An extensive empirical investigation involving four real-world datasets is performed, comparing the proposed approach to other existing data sampling techniques that target the class imbalance problem. Our results demonstrate that Evolutionary Sampling, both with and without learner optimization, performs relatively better than other data sampling techniques. A detailed coverage of our case studies in this paper lends itself toward empirical replication.
Uitgever: IOS Press
Bronbestand: Elektronische Wetenschappelijke Tijdschriften
 
 

                             Details van artikel 2 van 8 gevonden artikelen
 
<< vorige    volgende >>
 
 Koninklijke Bibliotheek - Nationale Bibliotheek van Nederland