nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
A Combined Manual Annotation and Deep-Learning Natural Language Processing Study on Accurate Entity Extraction in Hereditary Disease Related Biomedical Literature
|
Huang, Dao-Ling |
|
|
16 |
2 |
p. 333-344 |
artikel |
2 |
A Computational Predictor for Accurate Identification of Tumor Homing Peptides by Integrating Sequential and Deep BiLSTM Features
|
Arif, Roha |
|
|
16 |
2 |
p. 503-518 |
artikel |
3 |
A Review of the Application of Spatial Transcriptomics in Neuroscience
|
Zhang, Le |
|
|
16 |
2 |
p. 243-260 |
artikel |
4 |
Correction to: Machine Learning Accelerates De Novo Design of Antimicrobial Peptides
|
Yin, Kedong |
|
|
16 |
2 |
p. 404 |
artikel |
5 |
Deep Canonical Correlation Fusion Algorithm Based on Denoising Autoencoder for ASD Diagnosis and Pathogenic Brain Region Identification
|
Zhang, Huilian |
|
|
16 |
2 |
p. 455-468 |
artikel |
6 |
GEnDDn: An lncRNA–Disease Association Identification Framework Based on Dual-Net Neural Architecture and Deep Neural Network
|
Peng, Lihong |
|
|
16 |
2 |
p. 418-438 |
artikel |
7 |
GraphsformerCPI: Graph Transformer for Compound–Protein Interaction Prediction
|
Ma, Jun |
|
|
16 |
2 |
p. 361-377 |
artikel |
8 |
Inference of Gene Regulatory Networks Based on Multi-view Hierarchical Hypergraphs
|
Wu, Songyang |
|
|
16 |
2 |
p. 318-332 |
artikel |
9 |
LPI-SKMSC: Predicting LncRNA–Protein Interactions with Segmented k-mer Frequencies and Multi-space Clustering
|
Sun, Dian-Zheng |
|
|
16 |
2 |
p. 378-391 |
artikel |
10 |
Machine Learning Accelerates De Novo Design of Antimicrobial Peptides
|
Yin, Kedong |
|
|
16 |
2 |
p. 392-403 |
artikel |
11 |
MetaV: A Pioneer in feature Augmented Meta-Learning Based Vision Transformer for Medical Image Classification
|
Ansari, Shaharyar Alam |
|
|
16 |
2 |
p. 469-488 |
artikel |
12 |
MF-MNER: Multi-models Fusion for MNER in Chinese Clinical Electronic Medical Records
|
Du, Haoze |
|
|
16 |
2 |
p. 489-502 |
artikel |
13 |
Predicting Microbe-Disease Associations Based on a Linear Neighborhood Label Propagation Method with Multi-order Similarity Fusion Learning
|
Chen, Ruibin |
|
|
16 |
2 |
p. 345-360 |
artikel |
14 |
Predicting miRNA–Disease Associations by Combining Graph and Hypergraph Convolutional Network
|
Liang, Xujun |
|
|
16 |
2 |
p. 289-303 |
artikel |
15 |
ResDeepSurv: A Survival Model for Deep Neural Networks Based on Residual Blocks and Self-attention Mechanism
|
Wang, Yuchen |
|
|
16 |
2 |
p. 405-417 |
artikel |
16 |
Review and Comparative Analysis of Methods and Advancements in Predicting Protein Complex Structure
|
Zhao, Nan |
|
|
16 |
2 |
p. 261-288 |
artikel |
17 |
scEM: A New Ensemble Framework for Predicting Cell Type Composition Based on scRNA-Seq Data
|
Cai, Xianxian |
|
|
16 |
2 |
p. 304-317 |
artikel |
18 |
Transformative Deep Neural Network Approaches in Kidney Ultrasound Segmentation: Empirical Validation with an Annotated Dataset
|
Khan, Rashid |
|
|
16 |
2 |
p. 439-454 |
artikel |