nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
A deep learner model for multi-language webshell detection
|
Hannousse, Abdelhakim |
|
|
22 |
1 |
p. 47-61 |
artikel |
2 |
A novel approach for detection of APT malware using multi-dimensional hybrid Bayesian belief network
|
Sharma, Amit |
|
|
22 |
1 |
p. 119-135 |
artikel |
3 |
A review on fake news detection 3T’s: typology, time of detection, taxonomies
|
Rastogi, Shubhangi |
|
|
22 |
1 |
p. 177-212 |
artikel |
4 |
Correction to: A decentralized honeypot for IoT Protocols based on Android devices
|
Lygerou, Irini |
|
|
22 |
1 |
p. 303 |
artikel |
5 |
Cyber risk management for autonomous passenger ships using threat-informed defense-in-depth
|
Amro, Ahmed |
|
|
22 |
1 |
p. 249-288 |
artikel |
6 |
Deep SARSA-based reinforcement learning approach for anomaly network intrusion detection system
|
Mohamed, Safa |
|
|
22 |
1 |
p. 235-247 |
artikel |
7 |
Early web application attack detection using network traffic analysis
|
Rajić, Branislav |
|
|
22 |
1 |
p. 77-91 |
artikel |
8 |
Gridchain: an investigation of privacy for the future local distribution grid
|
Picazo-Sanchez, Pablo |
|
|
22 |
1 |
p. 29-46 |
artikel |
9 |
Intrusion detection system over real-time data traffic using machine learning methods with feature selection approaches
|
Sah, Gulab |
|
|
22 |
1 |
p. 1-27 |
artikel |
10 |
Malicious code detection in android: the role of sequence characteristics and disassembling methods
|
Balikcioglu, Pinar G. |
|
|
22 |
1 |
p. 107-118 |
artikel |
11 |
Mobile botnet detection: a comprehensive survey
|
Hamzenejadi, Sajad |
|
|
22 |
1 |
p. 137-175 |
artikel |
12 |
Modeling reporting delays in cyber incidents: an industry-level comparison
|
Sangari, Seema |
|
|
22 |
1 |
p. 63-76 |
artikel |
13 |
PatrIoT: practical and agile threat research for IoT
|
Süren, Emre |
|
|
22 |
1 |
p. 213-233 |
artikel |
14 |
Restricting data-leakage using fine-grained access control on OSN objects
|
Rathore, Nemi Chandra |
|
|
22 |
1 |
p. 93-106 |
artikel |
15 |
User identification using deep learning and human activity mobile sensor data
|
Alawneh, Luay |
|
|
22 |
1 |
p. 289-301 |
artikel |