nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
A computational mechanics special issue on: data-driven modeling and simulation—theory, methods, and applications
|
Liu, Wing Kam |
|
|
64 |
2 |
p. 275-277 |
artikel |
2 |
A cooperative game for automated learning of elasto-plasticity knowledge graphs and models with AI-guided experimentation
|
Wang, Kun |
|
2019 |
64 |
2 |
p. 467-499 |
artikel |
3 |
A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites
|
Lu, Xiaoxin |
|
2018 |
64 |
2 |
p. 307-321 |
artikel |
4 |
Application of deep learning neural network to identify collision load conditions based on permanent plastic deformation of shell structures
|
Chen, Guorong |
|
2019 |
64 |
2 |
p. 435-449 |
artikel |
5 |
Clustering discretization methods for generation of material performance databases in machine learning and design optimization
|
Li, Hengyang |
|
2019 |
64 |
2 |
p. 281-305 |
artikel |
6 |
Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems
|
Yang, Yibo |
|
2019 |
64 |
2 |
p. 417-434 |
artikel |
7 |
Correction to: A computational mechanics special issue on: data-driven modeling and simulation—theory, methods, and applications
|
Liu, Wing Kam |
|
2019 |
64 |
2 |
p. 279 |
artikel |
8 |
Derivation of heterogeneous material laws via data-driven principal component expansions
|
Yang, Hang |
|
2019 |
64 |
2 |
p. 365-379 |
artikel |
9 |
Fast calculation of interaction tensors in clustering-based homogenization
|
Zhang, Lei |
|
2019 |
64 |
2 |
p. 351-364 |
artikel |
10 |
Integrated Lagrangian and Eulerian 3D microstructure-explicit simulations for predicting macroscopic probabilistic SDT thresholds of energetic materials
|
Wei, Yaochi |
|
2019 |
64 |
2 |
p. 547-561 |
artikel |
11 |
Learning slosh dynamics by means of data
|
Moya, B. |
|
2019 |
64 |
2 |
p. 511-523 |
artikel |
12 |
Model-free data-driven methods in mechanics: material data identification and solvers
|
Stainier, Laurent |
|
2019 |
64 |
2 |
p. 381-393 |
artikel |
13 |
Non-parametric material state field extraction from full field measurements
|
Leygue, Adrien |
|
2019 |
64 |
2 |
p. 501-509 |
artikel |
14 |
Parametric Gaussian process regression for big data
|
Raissi, Maziar |
|
2019 |
64 |
2 |
p. 409-416 |
artikel |
15 |
Prediction of aerodynamic flow fields using convolutional neural networks
|
Bhatnagar, Saakaar |
|
2019 |
64 |
2 |
p. 525-545 |
artikel |
16 |
Principle of cluster minimum complementary energy of FEM-cluster-based reduced order method: fast updating the interaction matrix and predicting effective nonlinear properties of heterogeneous material
|
Nie, Yinghao |
|
2019 |
64 |
2 |
p. 323-349 |
artikel |
17 |
Solving Bayesian inverse problems from the perspective of deep generative networks
|
Hou, Thomas Y. |
|
2019 |
64 |
2 |
p. 395-408 |
artikel |
18 |
Transfer learning of deep material network for seamless structure–property predictions
|
Liu, Zeliang |
|
2019 |
64 |
2 |
p. 451-465 |
artikel |