nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
Challenges of neural network accelerators for aeronautics—position paper
|
Lesage, Benjamin |
|
|
61 |
2 |
p. 268-274 |
artikel |
2 |
Guest editorial: a roadmap towards learning-enabled and learning-assisted real-time systems
|
Nasri, Mitra |
|
|
61 |
2 |
p. 183-184 |
artikel |
3 |
Position paper: deep reinforcement learning for real-time resource management
|
Theile, Mirco |
|
|
61 |
2 |
p. 288-293 |
artikel |
4 |
Research directions for real-time implementation of AI algorithms
|
Abdeddaïm, Yasmina |
|
|
61 |
2 |
p. 253-258 |
artikel |
5 |
Shielded reinforcement learning for fault-tolerant scheduling in real-time systems
|
Shi, Junjie |
|
|
61 |
2 |
p. 306-310 |
artikel |
6 |
The advantage of the GPU as a real-time AI accelerator
|
Bakita, Joshua |
|
|
61 |
2 |
p. 275-280 |
artikel |
7 |
The bottlenecks of AI: challenges for embedded and real-time research in a data-centric age
|
Abdelzaher, Tarek |
|
|
61 |
2 |
p. 185-236 |
artikel |
8 |
Timely ML
|
Kuhse, Daniel |
|
|
61 |
2 |
p. 311-319 |
artikel |
9 |
Timing guarantees for inference of AI models in embedded systems
|
Lee, Seunghoon |
|
|
61 |
2 |
p. 259-267 |
artikel |
10 |
To MILP or not to MILP? On AI techniques for the design and optimization of real-time systems
|
Casini, Daniel |
|
|
61 |
2 |
p. 294-299 |
artikel |
11 |
Toward predictable AI-based real-time systems
|
Buttazzo, Giorgio |
|
|
61 |
2 |
p. 237-252 |
artikel |
12 |
Toward state-aware scheduling of machine-learning workloads
|
Yuhas, Michael |
|
|
61 |
2 |
p. 281-287 |
artikel |
13 |
Using machine learning for timing analysis: where do we stand?
|
Amalou, Abderaouf Nassim |
|
|
61 |
2 |
p. 300-305 |
artikel |
14 |
When machine learning and neural networks marry real-time scheduling
|
Guo, Zhishan |
|
|
61 |
2 |
p. 320-325 |
artikel |