nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
Aboveground wheat biomass estimation from a low-altitude UAV platform based on multimodal remote sensing data fusion with the introduction of terrain factors
|
Zhang, Shao-Hua |
|
|
25 |
1 |
p. 119-145 |
artikel |
2 |
Almost priceless: how internet access impacts U.S. farmer leaders’ precision agriculture technology perceptions
|
Greig, Jamie |
|
|
25 |
1 |
p. 360-375 |
artikel |
3 |
A new multispectral index for canopy nitrogen concentration applicable across growth stages in ryegrass and barley
|
Patel, Manish Kumar |
|
|
25 |
1 |
p. 486-519 |
artikel |
4 |
A novel approach for analysing environmental sustainability aspects of combine harvesters through telematics data. Part II: an IT tool for comparative analysis
|
Savickas, Dainius |
|
|
25 |
1 |
p. 221-234 |
artikel |
5 |
A novel approach for analysing environmental sustainability aspects of combine harvester through telematics data. Part I: evaluation and analysis of field tests
|
Savickas, Dainius |
|
|
25 |
1 |
p. 100-118 |
artikel |
6 |
A novel method for optimizing regional-scale management zones based on a sustainable environmental index
|
Li, Yue |
|
|
25 |
1 |
p. 257-282 |
artikel |
7 |
Autonomous paddy field puddling and leveling operations based on full-coverage path generation and tracking
|
Jeon, Chan-Woo |
|
|
25 |
1 |
p. 235-256 |
artikel |
8 |
Combining remote sensing, SPAD readings, and laboratory analysis for monitoring olive groves and olive oil quality
|
Guermazi, Emna |
|
|
25 |
1 |
p. 65-82 |
artikel |
9 |
Correction to: a novel method for optimizing regional-scale management zones based on a sustainable environmental index
|
Li, Yue |
|
|
25 |
1 |
p. 283-284 |
artikel |
10 |
Data-driven agriculture and sustainable farming: friends or foes?
|
Rozenstein, Offer |
|
|
25 |
1 |
p. 520-531 |
artikel |
11 |
Deep learning techniques for in-crop weed recognition in large-scale grain production systems: a review
|
Hu, Kun |
|
|
25 |
1 |
p. 1-29 |
artikel |
12 |
Evolution of precision agricultural technologies: a patent network analysis
|
Tey, Yeong Sheng |
|
|
25 |
1 |
p. 376-395 |
artikel |
13 |
High-precision estimation of grass quality and quantity using UAS-based VNIR and SWIR hyperspectral cameras and machine learning
|
Oliveira, Raquel Alves |
|
|
25 |
1 |
p. 186-220 |
artikel |
14 |
Impact of potassium fertilisation on mobile proximal gamma-ray spectrometry: case study on a long-term field trial
|
Pätzold, Stefan |
|
|
25 |
1 |
p. 532-542 |
artikel |
15 |
Integration of ultrasonic and optical sensing systems to assess sugarcane biomass and N-uptake
|
Portz, G. |
|
|
25 |
1 |
p. 83-99 |
artikel |
16 |
Mapping fire blight cankers and autumn blooming in pear trees using Faster R-CNN
|
Linker, Raphael |
|
|
25 |
1 |
p. 396-411 |
artikel |
17 |
Olive yield monitor for small farms based on an instrumented trailer to collect big bags from the ground
|
Bayano-Tejero, Sergio |
|
|
25 |
1 |
p. 412-429 |
artikel |
18 |
Prediction of cotton yield based on soil texture, weather conditions and UAV imagery using deep learning
|
Feng, Aijing |
|
|
25 |
1 |
p. 303-326 |
artikel |
19 |
Prediction of pasture yield using machine learning-based optical sensing: a systematic review
|
Stumpe, Christoph |
|
|
25 |
1 |
p. 430-459 |
artikel |
20 |
Real-time cucurbit fruit detection in greenhouse using improved YOLO series algorithm
|
Lawal, Olarewaju Mubashiru |
|
|
25 |
1 |
p. 347-359 |
artikel |
21 |
Remote sensing of rice phenology and physiology via absorption coefficient derived from unmanned aerial vehicle imaging
|
Peng, Yi |
|
|
25 |
1 |
p. 285-302 |
artikel |
22 |
Spatial and dynamic distribution of Chrysoperla spp. and Leucoptera coffeella populations in coffee Coffea arabica L
|
da Silva, Brenda Karina Rodrigues |
|
|
25 |
1 |
p. 327-346 |
artikel |
23 |
Spatial variability mapping of indaziflam and metribuzin sorption–desorption for precision weed control
|
da Costa Lima, Alessandro |
|
|
25 |
1 |
p. 30-50 |
artikel |
24 |
Sweet corn yield prediction using machine learning models and field-level data
|
Dhaliwal, Daljeet S. |
|
|
25 |
1 |
p. 51-64 |
artikel |
25 |
WeedsNet: a dual attention network with RGB-D image for weed detection in natural wheat field
|
Xu, Ke |
|
|
25 |
1 |
p. 460-485 |
artikel |
26 |
Who is responsible for ‘responsible AI’?: Navigating challenges to build trust in AI agriculture and food system technology
|
Alexander, Carrie S. |
|
|
25 |
1 |
p. 146-185 |
artikel |