nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
A Diophantine equation with the harmonic mean
|
Zhang, Yong |
|
|
80 |
1 |
p. 138-144 |
artikel |
2 |
An application of Baker’s method to the Jeśmanowicz’ conjecture on primitive Pythagorean triples
|
Le, Maohua |
|
|
80 |
1 |
p. 74-80 |
artikel |
3 |
An Ehresmann–Schein–Nambooripad theorem for locally Ehresmann P-Ehresmann semigroups
|
Wang, Shoufeng |
|
|
80 |
1 |
p. 108-137 |
artikel |
4 |
Cohomology of aff(n|1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {aff}(n|1)$$\end{document} acting on the spaces of linear differential operators on the superspace R1|n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{1|n}$$\end{document}
|
Ben Fraj, N. |
|
|
80 |
1 |
p. 1-14 |
artikel |
5 |
Correction to: X-coordinates of Pell equations as sums of two Tribonacci numbers
|
Bravo, Eric F. |
|
|
80 |
1 |
p. 145-146 |
artikel |
6 |
Note on a paper by Bordellès, Dai, Heyman, Pan and Shparlinski
|
Wu, J. |
|
|
80 |
1 |
p. 95-102 |
artikel |
7 |
On derivative of trigonometric polynomials and characterizations of modulus of smoothness in weighted Lebesgue space with variable exponent
|
Testici, Ahmet |
|
|
80 |
1 |
p. 59-73 |
artikel |
8 |
On division subrings normalized by almost subnormal subgroups in division rings
|
Deo, Trinh Thanh |
|
|
80 |
1 |
p. 15-27 |
artikel |
9 |
On the distribution of square-full and cube-full primitive roots
|
Srichan, Teerapat |
|
|
80 |
1 |
p. 103-107 |
artikel |
10 |
On the functional equation Gx,Gy,x=Gy,Gx,y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\left( x,G\left( y,x\right) \right) = G\left( y,G\left( x,y\right) \right) $$\end{document} and means
|
Li, Lin |
|
|
80 |
1 |
p. 28-37 |
artikel |
11 |
Simplicial volume with Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_p$$\end{document}-coefficients
|
Löh, Clara |
|
|
80 |
1 |
p. 38-58 |
artikel |
12 |
Some notes on the multiplicative order of α+α-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha + \alpha ^{-1}$$\end{document} in finite fields of characteristic two
|
Ugolini, Simone |
|
|
80 |
1 |
p. 81-94 |
artikel |