nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
A comparative analysis of computational drug repurposing approaches: proposing a novel tensor-matrix-tensor factorization method
|
Zabihian, Arash |
|
|
28 |
4 |
p. 2177-2196 |
artikel |
2 |
A consensual machine-learning-assisted QSAR model for effective bioactivity prediction of xanthine oxidase inhibitors using molecular fingerprints
|
Wu, Yanling |
|
|
28 |
4 |
p. 2033-2048 |
artikel |
3 |
A deep learning-based theoretical protocol to identify potentially isoform-selective PI3Kα inhibitors
|
Shafiq, Muhammad |
|
|
28 |
4 |
p. 1907-1924 |
artikel |
4 |
AI and ML for small molecule drug discovery in the big data era II
|
Roy, Kunal |
|
|
28 |
4 |
p. 1847-1848 |
artikel |
5 |
An updated literature on BRAF inhibitors (2018–2023)
|
Maji, Lalmohan |
|
|
28 |
4 |
p. 2689-2730 |
artikel |
6 |
Application progress of deep generative models in de novo drug design
|
Liu, Yingxu |
|
|
28 |
4 |
p. 2411-2427 |
artikel |
7 |
Artificial intelligence assisted identification of potential tau aggregation inhibitors: ligand- and structure-based virtual screening, in silico ADME, and molecular dynamics study
|
Das, Bhanuranjan |
|
|
28 |
4 |
p. 2013-2031 |
artikel |
8 |
Bioinspired thiazolo-[2,3-b] quinazolin-6-one derivatives as potent anti-cancer agents targeting EGFR: their biological evaluations and in silico assessment
|
Mir, Showkat Ahmad |
|
|
28 |
4 |
p. 2479-2494 |
artikel |
9 |
Chemical analogue based drug design for cancer treatment targeting PI3K: integrating machine learning and molecular modeling
|
Bazuhair, Mohammed A. |
|
|
28 |
4 |
p. 2345-2364 |
artikel |
10 |
Classification models for predicting the bioactivity of pan-TRK inhibitors and SAR analysis
|
Zhao, Xiaoman |
|
|
28 |
4 |
p. 2077-2097 |
artikel |
11 |
Classification of FLT3 inhibitors and SAR analysis by machine learning methods
|
Zhao, Yunyang |
|
|
28 |
4 |
p. 1995-2011 |
artikel |
12 |
Computational biology-based study of the molecular mechanism of spermidine amelioration of acute pancreatitis
|
Shen, Yan |
|
|
28 |
4 |
p. 2583-2601 |
artikel |
13 |
Computational prediction of phytochemical inhibitors against the cap-binding domain of Rift Valley fever virus
|
Muralitharan, Ishwarya |
|
|
28 |
4 |
p. 2637-2650 |
artikel |
14 |
Construction of IRAK4 inhibitor activity prediction model based on machine learning
|
Zhao, Yihuan |
|
|
28 |
4 |
p. 2289-2300 |
artikel |
15 |
Data mining and molecular dynamics analysis to detect HIV-1 reverse transcriptase RNase H activity inhibitor
|
Ghafoor, Naeem Abdul |
|
|
28 |
4 |
p. 1869-1888 |
artikel |
16 |
Deep learning algorithms applied to computational chemistry
|
Guzman-Pando, Abimael |
|
|
28 |
4 |
p. 2375-2410 |
artikel |
17 |
Development and validation of machine learning models for the prediction of SH-2 containing protein tyrosine phosphatase 2 inhibitors
|
Adhikari, Nilanjan |
|
|
28 |
4 |
p. 1889-1905 |
artikel |
18 |
Elucidating the functional impact of G137V and G144R variants in Maroteaux Lamy’s Syndrome by Molecular Dynamics Simulation
|
Madhana Priya, N. |
|
|
28 |
4 |
p. 2049-2063 |
artikel |
19 |
Explainable artificial intelligence-assisted virtual screening and bioinformatics approaches for effective bioactivity prediction of phenolic cyclooxygenase-2 (COX-2) inhibitors using PubChem molecular fingerprints
|
Rudrapal, Mithun |
|
|
28 |
4 |
p. 2099-2118 |
artikel |
20 |
Exploration of the molecular mechanism of tea polyphenols against pulmonary hypertension by integrative approach of network pharmacology, molecular docking, and experimental verification
|
Yang, Huan |
|
|
28 |
4 |
p. 2603-2616 |
artikel |
21 |
Exploring proteasome inhibition using atomic weighted vector indices and machine learning approaches
|
Martínez-López, Yoan |
|
|
28 |
4 |
p. 1983-1994 |
artikel |
22 |
Exploring putative drug properties associated with TNF-alpha inhibition and identification of potential targets in cardiovascular disease using machine learning-assisted QSAR modeling and virtual reverse pharmacology approach
|
Shah, Manisha |
|
|
28 |
4 |
p. 2263-2287 |
artikel |
23 |
FGFR1Pred: an artificial intelligence-based model for predicting fibroblast growth factor receptor 1 inhibitor
|
Charan, Ekambarapu Sree |
|
|
28 |
4 |
p. 2065-2076 |
artikel |
24 |
Identification of mycobacterial Thymidylate kinase inhibitors: a comprehensive pharmacophore, machine learning, molecular docking, and molecular dynamics simulation studies
|
Chikhale, Rupesh V. |
|
|
28 |
4 |
p. 1947-1964 |
artikel |
25 |
Identification of novel potential inhibitors of monkeypox virus thymidine kinase using molecular docking, molecular dynamics simulation and MM/PBSA methods
|
Abdizadeh, Tooba |
|
|
28 |
4 |
p. 2513-2546 |
artikel |
26 |
Identification of potential FAK inhibitors using mol2vec molecular descriptor-based QSAR, molecular docking, ADMET study, and molecular dynamics simulation
|
Hang, Nguyen Thu |
|
|
28 |
4 |
p. 2163-2175 |
artikel |
27 |
Identification of potential PIM-2 inhibitors via ligand-based generative models, molecular docking and molecular dynamics simulations
|
Qin, Tianli |
|
|
28 |
4 |
p. 2245-2262 |
artikel |
28 |
Improved QSAR models for PARP-1 inhibition using data balancing, interpretable machine learning, and matched molecular pair analysis
|
Gomatam, Anish |
|
|
28 |
4 |
p. 2135-2152 |
artikel |
29 |
In silico screening of Fyn kinase inhibitors using classification-based QSAR model, molecular docking, molecular dynamics and ADME study
|
Hang, Nguyen Thu |
|
|
28 |
4 |
p. 2217-2228 |
artikel |
30 |
Investigation of bacterial DNA gyrase Inhibitor classification models and structural requirements utilizing multiple machine learning methods
|
Zhou, Guozheng |
|
|
28 |
4 |
p. 2119-2133 |
artikel |
31 |
In-vitro antiviral activity and in-silico targeted study of quinoline-3-carboxylate derivatives against SARS-Cov-2 isolate
|
Mittal, Ravi Kumar |
|
|
28 |
4 |
p. 2651-2665 |
artikel |
32 |
In vitro trypanocidal activities and structure–activity relationships of ciprofloxacin analogs
|
Janse van Rensburg, Helena D. |
|
|
28 |
4 |
p. 2667-2680 |
artikel |
33 |
LGBM-ACp: an ensemble model for anticancer peptide prediction and in silico screening with potential drug targets
|
Garai, Swarnava |
|
|
28 |
4 |
p. 1965-1981 |
artikel |
34 |
Machine learning-based classification models for non-covalent Bruton’s tyrosine kinase inhibitors: predictive ability and interpretability
|
Li, Guo |
|
|
28 |
4 |
p. 2429-2447 |
artikel |
35 |
MLASM: Machine learning based prediction of anticancer small molecules
|
Balaji, Priya Dharshini |
|
|
28 |
4 |
p. 2153-2161 |
artikel |
36 |
Molecular design of hydroxamic acid-based derivatives as urease inhibitors of Helicobacter pylori
|
Wang, Na |
|
|
28 |
4 |
p. 2229-2244 |
artikel |
37 |
MolGC: molecular geometry comparator algorithm for bond length mean absolute error computation on molecules
|
Camarillo-Cisneros, Javier |
|
|
28 |
4 |
p. 1925-1945 |
artikel |
38 |
Multinomial classification of NLRP3 inhibitory compounds based on large scale machine learning approaches
|
Ishfaq, Muhammad |
|
|
28 |
4 |
p. 1849-1868 |
artikel |
39 |
Novel molecular inhibitor design for Plasmodium falciparum Lactate dehydrogenase enzyme using machine learning generated library of diverse compounds
|
Kuldeep, Jitendra |
|
|
28 |
4 |
p. 2331-2344 |
artikel |
40 |
One-pot synthesis, characterization and antiviral properties of new benzenesulfonamide-based spirothiazolidinones
|
Apaydın, Çağla Begüm |
|
|
28 |
4 |
p. 2681-2688 |
artikel |
41 |
PMTPred: machine-learning-based prediction of protein methyltransferases using the composition of k-spaced amino acid pairs
|
Yadav, Arvind Kumar |
|
|
28 |
4 |
p. 2301-2315 |
artikel |
42 |
Prediction of Mycobacterium tuberculosis cell wall permeability using machine learning methods
|
Banerjee, Aritra |
|
|
28 |
4 |
p. 2317-2329 |
artikel |
43 |
Prediction of Rab5B inhibitors through integrative in silico techniques
|
Kashyap, Dharmendra |
|
|
28 |
4 |
p. 2547-2562 |
artikel |
44 |
Probing the molecular mechanisms of α-synuclein inhibitors unveils promising natural candidates through machine-learning QSAR, pharmacophore modeling, and molecular dynamics simulations
|
Boulaamane, Yassir |
|
|
28 |
4 |
p. 2495-2511 |
artikel |
45 |
Probing the origins of programmed death ligand-1 inhibition by implementing machine learning-assisted sequential virtual screening techniques
|
Kuttappan, Shruthy |
|
|
28 |
4 |
p. 2449-2466 |
artikel |
46 |
Review and perspective on bioinformatics tools using machine learning and deep learning for predicting antiviral peptides
|
Lefin, Nicolás |
|
|
28 |
4 |
p. 2365-2374 |
artikel |
47 |
Scoparone chemical modification into semi-synthetic analogues featuring 3-substitution for their anti-inflammatory activity
|
Kumar, Chetan |
|
|
28 |
4 |
p. 2467-2478 |
artikel |
48 |
Structure-based pharmacophore modeling and DFT studies of Indian Ocean-derived red algal compounds as PI3Kα inhibitors
|
vasuki, Archana |
|
|
28 |
4 |
p. 2563-2581 |
artikel |
49 |
Synthesis, and biological evaluation of EGFR/HER2-NAMPT conjugates for tumor treatment
|
Ding, Mengyuan |
|
|
28 |
4 |
p. 2617-2636 |
artikel |
50 |
Unveiling critical structural features for effective HDAC8 inhibition: a comprehensive study using quantitative read-across structure–activity relationship (q-RASAR) and pharmacophore modeling
|
Khatun, Samima |
|
|
28 |
4 |
p. 2197-2215 |
artikel |
51 |
You must be flexible enough to be trained, Mr. Dynamics simulator
|
Danazumi, Ammar Usman |
|
|
28 |
4 |
p. 2731-2733 |
artikel |