nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
Data complexity meta-features for regression problems
|
Lorena, Ana C. |
|
2017 |
107 |
1 |
p. 209-246 |
artikel |
2 |
Discovering predictive ensembles for transfer learning and meta-learning
|
Kordík, Pavel |
|
2017 |
107 |
1 |
p. 177-207 |
artikel |
3 |
Efficient benchmarking of algorithm configurators via model-based surrogates
|
Eggensperger, Katharina |
|
2017 |
107 |
1 |
p. 15-41 |
artikel |
4 |
Empirical hardness of finding optimal Bayesian network structures: algorithm selection and runtime prediction
|
Malone, Brandon |
|
2017 |
107 |
1 |
p. 247-283 |
artikel |
5 |
Instance spaces for machine learning classification
|
Muñoz, Mario A. |
|
2017 |
107 |
1 |
p. 109-147 |
artikel |
6 |
Metalearning and Algorithm Selection: progress, state of the art and introduction to the 2018 Special Issue
|
Brazdil, Pavel |
|
2017 |
107 |
1 |
p. 1-14 |
artikel |
7 |
Meta-QSAR: a large-scale application of meta-learning to drug design and discovery
|
Olier, Ivan |
|
2017 |
107 |
1 |
p. 285-311 |
artikel |
8 |
Scalable Gaussian process-based transfer surrogates for hyperparameter optimization
|
Wistuba, Martin |
|
2017 |
107 |
1 |
p. 43-78 |
artikel |
9 |
Speeding up algorithm selection using average ranking and active testing by introducing runtime
|
Abdulrahman, Salisu Mamman |
|
2017 |
107 |
1 |
p. 79-108 |
artikel |
10 |
The online performance estimation framework: heterogeneous ensemble learning for data streams
|
Rijn, Jan N. van |
|
2017 |
107 |
1 |
p. 149-176 |
artikel |