nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
Editor’s note on the themed issue: integration of machine learning and quantitative systems pharmacology
|
Bonate, Peter L. |
|
|
49 |
1 |
p. 1-3 |
artikel |
2 |
From complex data to biological insight: ‘DEKER’ feature selection and network inference
|
Hayes, Sean M. S. |
|
|
49 |
1 |
p. 81-99 |
artikel |
3 |
From data to QSP models: a pipeline for using Boolean networks for hypothesis inference and dynamic model building
|
Putnins, M. |
|
|
49 |
1 |
p. 101-115 |
artikel |
4 |
Generative adversarial networks for construction of virtual populations of mechanistic models: simulations to study Omecamtiv Mecarbil action
|
Parikh, Jaimit |
|
|
49 |
1 |
p. 51-64 |
artikel |
5 |
Machine learning-guided, big data-enabled, biomarker-based systems pharmacology: modeling the stochasticity of natural history and disease progression
|
McComb, Mason |
|
|
49 |
1 |
p. 65-79 |
artikel |
6 |
Recent applications of quantitative systems pharmacology and machine learning models across diseases
|
Aghamiri, Sara Sadat |
|
|
49 |
1 |
p. 19-37 |
artikel |
7 |
Review of applications and challenges of quantitative systems pharmacology modeling and machine learning for heart failure
|
Cheng, Limei |
|
|
49 |
1 |
p. 39-50 |
artikel |
8 |
Thanks to our reviewers 2021!
|
|
|
|
49 |
1 |
p. 133-134 |
artikel |
9 |
Two heads are better than one: current landscape of integrating QSP and machine learning
|
Zhang, Tongli |
|
|
49 |
1 |
p. 5-18 |
artikel |
10 |
Understanding virtual patients efficiently and rigorously by combining machine learning with dynamical modelling
|
Zhang, Tongli |
|
|
49 |
1 |
p. 117-131 |
artikel |