nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
An interpretable system for predicting the impact of COVID-19 government interventions on stock market sectors
|
Yang, Cai |
|
|
347 |
2 |
p. 1031-1058 |
artikel |
2 |
From rants to raves: unraveling movie critics’ reviews with explainable artificial intelligence
|
Talaei, Nolan M. |
|
|
347 |
2 |
p. 937-957 |
artikel |
3 |
Heterogeneous business network based interpretable competitive firm identification: a graph neural network method
|
Ye, Xiaoqing |
|
|
347 |
2 |
p. 1133-1161 |
artikel |
4 |
How to customize an early start preparatory course policy to improve student graduation success: an application of uplift modeling
|
Tanai, Yertai |
|
|
347 |
2 |
p. 913-936 |
artikel |
5 |
Interpretable machine learning and explainable artificial intelligence
|
Topuz, Kazim |
|
|
347 |
2 |
p. 775-782 |
artikel |
6 |
Interpretable multi-hop knowledge reasoning for gastrointestinal disease
|
Wang, Dujuan |
|
|
347 |
2 |
p. 959-990 |
artikel |
7 |
Leveraging interpretable machine learning in intensive care
|
Bohlen, Lasse |
|
|
347 |
2 |
p. 1093-1132 |
artikel |
8 |
Modified monotone policy iteration for interpretable policies in Markov decision processes and the impact of state ordering rules
|
Lee, Sun Ju |
|
|
347 |
2 |
p. 783-841 |
artikel |
9 |
Population-based exploration in reinforcement learning through repulsive reward shaping using eligibility traces
|
Bal, Melis Ilayda |
|
|
347 |
2 |
p. 1059-1091 |
artikel |
10 |
Quantifying and explaining machine learning uncertainty in predictive process monitoring: an operations research perspective
|
Mehdiyev, Nijat |
|
|
347 |
2 |
p. 991-1030 |
artikel |
11 |
Streamlining patients’ opioid prescription dosage: an explanatory bayesian model
|
Asilkalkan, Abdullah |
|
|
347 |
2 |
p. 889-912 |
artikel |
12 |
Toward interpretable machine learning: evaluating models of heterogeneous predictions
|
Zhang, Ruixun |
|
|
347 |
2 |
p. 867-887 |
artikel |
13 |
Understanding the challenges affecting food-sharing apps’ usage: insights using a text-mining and interpretable machine learning approach
|
Puram, Praveen |
|
|
347 |
2 |
p. 843-865 |
artikel |