nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
A data-driven spatially-specific vaccine allocation framework for COVID-19
|
Hong, Zhaofu |
|
|
339 |
1-2 |
p. 203-226 |
artikel |
2 |
A data-driven system for cooperative-bus route planning based on generative adversarial network and metric learning
|
Wang, Jiguang |
|
|
339 |
1-2 |
p. 427-453 |
artikel |
3 |
A deep learning approach to improve built asset operations and disaster management in critical events: an integrative simulation model for quicker decision making
|
Galera-Zarco, Carlos |
|
|
339 |
1-2 |
p. 573-612 |
artikel |
4 |
A deep reinforcement learning assisted simulated annealing algorithm for a maintenance planning problem
|
Kosanoglu, Fuat |
|
|
339 |
1-2 |
p. 79-110 |
artikel |
5 |
A global forecasting method of heterogeneous household short-term load based on pre-trained autoencoder and deep-LSTM model
|
Zhao, Wenhui |
|
|
339 |
1-2 |
p. 227-259 |
artikel |
6 |
An improved transformer model with multi-head attention and attention to attention for low-carbon multi-depot vehicle routing problem
|
Zou, Yang |
|
|
339 |
1-2 |
p. 517-536 |
artikel |
7 |
Automatic MILP solver configuration by learning problem similarities
|
Hosny, Abdelrahman |
|
|
339 |
1-2 |
p. 909-936 |
artikel |
8 |
Collaborative truck multi-drone delivery system considering drone scheduling and en route operations
|
Thomas, Teena |
|
|
339 |
1-2 |
p. 693-739 |
artikel |
9 |
Complex networks and deep learning for copper flow across countries
|
Federico, Lorenzo |
|
|
339 |
1-2 |
p. 937-963 |
artikel |
10 |
Convolutional neural network based multi-input multi-output model for multi-sensor multivariate virtual metrology in semiconductor manufacturing
|
Choi, Jeongsub |
|
|
339 |
1-2 |
p. 185-201 |
artikel |
11 |
COVID-19 vaccine hesitancy: a social media analysis using deep learning
|
Nyawa, Serge |
|
|
339 |
1-2 |
p. 477-515 |
artikel |
12 |
Data-driven optimization models for inventory and financing decisions in online retailing platforms
|
Yang, Bingnan |
|
|
339 |
1-2 |
p. 741-764 |
artikel |
13 |
Deep learning applications in operations research
|
Kumar, Ajay |
|
|
339 |
1-2 |
p. 1-2 |
artikel |
14 |
Deep learning approaches for human-centered IoT applications in smart indoor environments: a contemporary survey
|
Abdel-Basset, Mohamed |
|
|
339 |
1-2 |
p. 3-51 |
artikel |
15 |
Deep-learning model using hybrid adaptive trend estimated series for modelling and forecasting sales
|
Efat, Md. Iftekharul Alam |
|
|
339 |
1-2 |
p. 297-328 |
artikel |
16 |
Does the energy sector serve as a hedge and safe haven?
|
Azad, A. S. M. Sohel |
|
|
339 |
1-2 |
p. 369-395 |
artikel |
17 |
Efficient visibility algorithm for high-frequency time-series: application to fault diagnosis with graph convolutional network
|
Lee, Sangho |
|
|
339 |
1-2 |
p. 813-833 |
artikel |
18 |
End-to-end risk budgeting portfolio optimization with neural networks
|
Uysal, A. Sinem |
|
|
339 |
1-2 |
p. 397-426 |
artikel |
19 |
Enhancing deep learning algorithm accuracy and stability using multicriteria optimization: an application to distributed learning with MNIST digits
|
La Torre, Davide |
|
|
339 |
1-2 |
p. 455-475 |
artikel |
20 |
Exploiting time-varying RFM measures for customer churn prediction with deep neural networks
|
Mena, Gary |
|
|
339 |
1-2 |
p. 765-787 |
artikel |
21 |
Forecasting duty-free shopping demand with multisource data: a deep learning approach
|
Zhang, Dong |
|
|
339 |
1-2 |
p. 861-887 |
artikel |
22 |
Great partners: how deep learning and blockchain help improve business operations together
|
Luo, Suyuan |
|
|
339 |
1-2 |
p. 53-78 |
artikel |
23 |
High-dimensional stochastic control models for newsvendor problems and deep learning resolution
|
Ma, Jingtang |
|
|
339 |
1-2 |
p. 789-811 |
artikel |
24 |
Identifying purchase intention through deep learning: analyzing the Q &D text of an E-Commerce platform
|
Ma, Jing |
|
|
339 |
1-2 |
p. 329-348 |
artikel |
25 |
IDILIM: incident detection included linear management using connected autonomous vehicles
|
Gokasar, Ilgin |
|
|
339 |
1-2 |
p. 889-908 |
artikel |
26 |
Improving the predictive accuracy of the cross-selling of consumer loans using deep learning networks
|
Boustani, Noureddine |
|
|
339 |
1-2 |
p. 613-630 |
artikel |
27 |
Incorporating causality in energy consumption forecasting using deep neural networks
|
Sharma, Kshitij |
|
|
339 |
1-2 |
p. 537-572 |
artikel |
28 |
Incorporating topic membership in review rating prediction from unstructured data: a gradient boosting approach
|
Yang, Nan |
|
|
339 |
1-2 |
p. 631-662 |
artikel |
29 |
Intermittent demand forecasting with transformer neural networks
|
Zhang, G. Peter |
|
|
339 |
1-2 |
p. 1051-1072 |
artikel |
30 |
Management of resource sharing in emergency response using data-driven analytics
|
Zhang, Jifan |
|
|
339 |
1-2 |
p. 663-692 |
artikel |
31 |
Multichannel convolution neural network for gas mixture classification
|
Oh, YongKyung |
|
|
339 |
1-2 |
p. 261-295 |
artikel |
32 |
Optimizing inland container shipping through reinforcement learning
|
Tomljenovic, Vid |
|
|
339 |
1-2 |
p. 1025-1050 |
artikel |
33 |
Role of land use in China’s urban energy consumption: based on a deep clustering network and decomposition analysis
|
Fan, Wei |
|
|
339 |
1-2 |
p. 835-859 |
artikel |
34 |
Root cause analysis of manufacturing variation from optical scanning data
|
Bui, Anh Tuan |
|
|
339 |
1-2 |
p. 111-130 |
artikel |
35 |
The third party logistics provider freight management problem: a framework and deep reinforcement learning approach
|
Abbasi-Pooya, Amin |
|
|
339 |
1-2 |
p. 965-1024 |
artikel |