nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
A Bayesian network to analyse basketball players’ performances: a multivariate copula-based approach
|
D’Urso, Pierpalo |
|
|
325 |
1 |
p. 419-440 |
artikel |
2 |
A hydraulic model outperforms work-balance models for predicting recovery kinetics from intermittent exercise
|
Weigend, Fabian C. |
|
|
325 |
1 |
p. 589-613 |
artikel |
3 |
Analysing a built-in advantage in asymmetric darts contests using causal machine learning
|
Goller, Daniel |
|
|
325 |
1 |
p. 649-679 |
artikel |
4 |
A new model for predicting the winner in tennis based on the eigenvector centrality
|
Arcagni, Alberto |
|
|
325 |
1 |
p. 615-632 |
artikel |
5 |
An extension of correspondence analysis based on the multiple Taguchi’s index to evaluate the relationships between three categorical variables graphically: an application to the Italian football championship
|
D’Ambra, Antonello |
|
|
325 |
1 |
p. 219-244 |
artikel |
6 |
A rank-size approach to analyse soccer competitions and teams: the case of the Italian football league “Serie A"
|
Ficcadenti, Valerio |
|
|
325 |
1 |
p. 85-113 |
artikel |
7 |
A robust method for clustering football players with mixed attributes
|
D’Urso, Pierpaolo |
|
|
325 |
1 |
p. 9-36 |
artikel |
8 |
Best strategy to win a match: an analytical approach using hybrid machine learning-clustering-association rule framework
|
Srivastava, Praveen Ranjan |
|
|
325 |
1 |
p. 319-361 |
artikel |
9 |
Betting market efficiency and prediction in binary choice models
|
Koning, Ruud H. |
|
|
325 |
1 |
p. 135-148 |
artikel |
10 |
Clustering of variables methods and measurement models for soccer players’ performances
|
Carpita, Maurizio |
|
|
325 |
1 |
p. 37-56 |
artikel |
11 |
Community detection in attributed networks for global transfer market
|
Clemente, G. P. |
|
|
325 |
1 |
p. 57-83 |
artikel |
12 |
Complex networks for community detection of basketball players
|
Chessa, Alessandro |
|
|
325 |
1 |
p. 363-389 |
artikel |
13 |
Does luck play a role in the determination of the rank positions in football leagues? A study of Europe’s ‘big five’
|
Sarkar, Sumit |
|
|
325 |
1 |
p. 245-260 |
artikel |
14 |
Dyadic analysis for multi-block data in sport surveys analytics
|
Iannario, Maria |
|
|
325 |
1 |
p. 701-714 |
artikel |
15 |
Editorial: Big data and data science in sport
|
D’Urso, Pierpaolo |
|
|
325 |
1 |
p. 1-7 |
artikel |
16 |
Estimation of player aging curves using regression and imputation
|
Schuckers, Michael |
|
|
325 |
1 |
p. 681-699 |
artikel |
17 |
Filtering active moments in basketball games using data from players tracking systems
|
Facchinetti, Tullio |
|
|
325 |
1 |
p. 521-538 |
artikel |
18 |
Football tracking data: a copula-based hidden Markov model for classification of tactics in football
|
Ötting, Marius |
|
|
325 |
1 |
p. 167-183 |
artikel |
19 |
Forecasting binary outcomes in soccer
|
Mattera, Raffaele |
|
|
325 |
1 |
p. 115-134 |
artikel |
20 |
Home advantage and mispricing in indoor sports’ ghost games: the case of European basketball
|
De Angelis, Luca |
|
|
325 |
1 |
p. 391-418 |
artikel |
21 |
Influence of Red and Yellow cards on team performance in elite soccer
|
Badiella, Llorenç |
|
|
325 |
1 |
p. 149-165 |
artikel |
22 |
Measuring players’ importance in basketball using the generalized Shapley value
|
Metulini, Rodolfo |
|
|
325 |
1 |
p. 441-465 |
artikel |
23 |
Optimization of team selection in fantasy cricket: a hybrid approach using recursive feature elimination and genetic algorithm
|
Jha, Apurva |
|
|
325 |
1 |
p. 289-317 |
artikel |
24 |
Predicting the next Pogačar: a data analytical approach to detect young professional cycling talents
|
Janssens, Bram |
|
|
325 |
1 |
p. 557-588 |
artikel |
25 |
Result-based talent identification in road cycling: discovering the next Eddy Merckx
|
Van Bulck, David |
|
|
325 |
1 |
p. 539-556 |
artikel |
26 |
Service quality in football tourism: an evaluation model based on online reviews and data envelopment analysis with linguistic distribution assessments
|
Darko, Adjei Peter |
|
|
325 |
1 |
p. 185-218 |
artikel |
27 |
Simulation-based decision making in the NFL using NFLSimulatoR
|
Williams, Benjamin |
|
|
325 |
1 |
p. 731-742 |
artikel |
28 |
Spatial performance analysis in basketball with CART, random forest and extremely randomized trees
|
Zuccolotto, Paola |
|
|
325 |
1 |
p. 495-519 |
artikel |
29 |
Sports analytics in the NFL: classifying the winner of the superbowl
|
Roumani, Yazan F. |
|
|
325 |
1 |
p. 715-730 |
artikel |
30 |
The analysis of serve decisions in tennis using Bayesian hierarchical models
|
Tea, Peter |
|
|
325 |
1 |
p. 633-648 |
artikel |
31 |
Understanding the effect of contextual factors and decision making on team performance in Twenty20 cricket: an interpretable machine learning approach
|
Puram, Praveen |
|
|
325 |
1 |
p. 261-288 |
artikel |
32 |
Who’s watching? Classifying sports viewers on social live streaming services
|
Liu, Haoyu |
|
|
325 |
1 |
p. 743-765 |
artikel |
33 |
Will more skills become a burden? The effect of positional ambiguity on player and team performance
|
Wang, Jiangang |
|
|
325 |
1 |
p. 467-493 |
artikel |