nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
A comparison of clustering models for inference of T cell receptor antigen specificity
|
Hudson, Dan |
|
|
1-2 |
C |
p. |
artikel |
2 |
A computational and experimental approach to studying NFkB signaling in response to single, dual, and triple TLR signaling
|
Newman, Thalia |
|
|
1-2 |
C |
p. |
artikel |
3 |
AIRR community curation and standardised representation for immunoglobulin and T cell receptor germline sets
|
Lees, William D. |
|
|
1-2 |
C |
p. |
artikel |
4 |
A Nextflow pipeline for T-cell receptor repertoire reconstruction and analysis from RNA sequencing data
|
Rubio, Teresa |
|
|
1-2 |
C |
p. |
artikel |
5 |
Association of pyroptosis and severeness of COVID-19 as revealed by integrated single-cell transcriptome data analysis
|
Xu, Qian |
|
|
1-2 |
C |
p. |
artikel |
6 |
Benchmarking solutions to the T-cell receptor epitope prediction problem: IMMREP22 workshop report
|
Meysman, Pieter |
|
|
1-2 |
C |
p. |
artikel |
7 |
CelltrackR: An R package for fast and flexible analysis of immune cell migration data
|
Wortel, Inge M.N. |
|
|
1-2 |
C |
p. |
artikel |
8 |
Computational modelling of immunological mechanisms: From statistical approaches to interpretable machine learning
|
Rodríguez Martínez, María |
|
|
1-2 |
C |
p. |
artikel |
9 |
Corrigendum to “T-cell receptor binding prediction: A machine learning revolution” [ImmunoInformatics, Volume 15, September 2024, 100040]
|
Rodríguez Martínez, Prof. María |
|
|
1-2 |
C |
p. |
artikel |
10 |
Data mining antibody sequences for database searching in bottom-up proteomics
|
Trinh, Xuan-Tung |
|
|
1-2 |
C |
p. |
artikel |
11 |
Deep learning for the detection of microsatellite instability from histology images in colorectal cancer: A systematic literature review
|
Echle, Amelie |
|
|
1-2 |
C |
p. |
artikel |
12 |
Do domain-specific protein language models outperform general models on immunology-related tasks?
|
Deutschmann, Nicolas |
|
|
1-2 |
C |
p. |
artikel |
13 |
Epitopedia: identifying molecular mimicry between pathogens and known immune epitopes
|
Balbin, Christian A |
|
|
1-2 |
C |
p. |
artikel |
14 |
Epitope identification of SARS-CoV-2 structural proteins using in silico approaches to obtain a conserved rational immunogenic peptide
|
Araújo, Leonardo Pereira de |
|
|
1-2 |
C |
p. |
artikel |
15 |
Guiding a language-model based protein design method towards MHC Class-I immune-visibility targets in vaccines and therapeutics
|
Gasser, Hans-Christof |
|
|
1-2 |
C |
p. |
artikel |
16 |
Immune checkpoint therapy modeling of PD-1/PD-L1 blockades reveals subtle difference in their response dynamics and potential synergy in combination
|
Kaveh, Kamran |
|
|
1-2 |
C |
p. |
artikel |
17 |
ImmunoInformatics: at the crossroads between immunology and informatics, and beyond
|
Halama, Niels |
|
|
1-2 |
C |
p. |
artikel |
18 |
Immunoinformatics: Pushing the boundaries of immunology research and medicine
|
Chatanaka, Miyo K. |
|
|
1-2 |
C |
p. |
artikel |
19 |
Improving immunovirotherapies: the intersection of mathematical modelling and experiments
|
Engeland, Christine E. |
|
|
1-2 |
C |
p. |
artikel |
20 |
In silico design and evaluation of a multi-epitope and multi-antigenic African swine fever vaccine
|
Buan, Ara Karizza G. |
|
|
1-2 |
C |
p. |
artikel |
21 |
In silico modelling of CD8 T cell immune response links genetic regulation to population dynamics
|
Nguyen, Thi Nhu Thao |
|
|
1-2 |
C |
p. |
artikel |
22 |
In silico single-cell metabolism analysis unravels a new transition stage of CD8 T cells 4 days post-infection
|
Arpin, Christophe |
|
|
1-2 |
C |
p. |
artikel |
23 |
Integrating single cell sequencing with a spatial quantitative systems pharmacology model spQSP for personalized prediction of triple-negative breast cancer immunotherapy response
|
Zhang, Shuming |
|
|
1-2 |
C |
p. |
artikel |
24 |
Interpretable deep learning to uncover the molecular binding patterns determining TCR–epitope interaction predictions
|
Dens, Ceder |
|
|
1-2 |
C |
p. |
artikel |
25 |
Lessons learned from the IMMREP23 TCR-epitope prediction challenge
|
Nielsen, Morten |
|
|
1-2 |
C |
p. |
artikel |
26 |
Machine-learning-based analytics for risk forecasting of anaphylaxis during general anesthesia
|
Liu, Shuang |
|
|
1-2 |
C |
p. |
artikel |
27 |
Modeling interaction of Glioma cells and CAR T-cells considering multiple CAR T-cells bindings
|
Li, Runpeng |
|
|
1-2 |
C |
p. |
artikel |
28 |
Modelling rheumatoid arthritis: A hybrid modelling framework to describe pannus formation in a small joint
|
Macfarlane, Fiona R. |
|
|
1-2 |
C |
p. |
artikel |
29 |
Molecular mimicry impact of the COVID-19 pandemic: Sequence homology between SARS-CoV-2 and autoimmune diseases epitopes
|
Maldonado-Catala, Pablo |
|
|
1-2 |
C |
p. |
artikel |
30 |
Multicohort analysis identifies conserved transcriptional interactions between humans and Plasmodium falciparum
|
Silva, Bárbara Fernandes |
|
|
1-2 |
C |
p. |
artikel |
31 |
Navigating the immunosuppressive brain tumor microenvironment using spatial biology
|
Widodo, Samuel S. |
|
|
1-2 |
C |
p. |
artikel |
32 |
NetMHCphosPan - Pan-specific prediction of MHC class I antigen presentation of phosphorylated ligands
|
Refsgaard, Carina Thusgaard |
|
|
1-2 |
C |
p. |
artikel |
33 |
Recent advances in T-cell receptor repertoire analysis: Bridging the gap with multimodal single-cell RNA sequencing
|
Valkiers, Sebastiaan |
|
|
1-2 |
C |
p. |
artikel |
34 |
Recent computational image workflows advance the spatio-phenotypic analysis of the tumor immune microenvironment
|
Valous, Nektarios A. |
|
|
1-2 |
C |
p. |
artikel |
35 |
SARS-CoV-2-identical protein regions found in mammalian coronaviruses have immunogenic potential and can imply cross-protection
|
Lopes, Luciano Rodrigo |
|
|
1-2 |
C |
p. |
artikel |
36 |
SARS-CoV-2 Omicron (BA.1 and BA.2) specific novel CD8+ and CD4+ T cell epitopes targeting spike protein
|
Parn, Simone |
|
|
1-2 |
C |
p. |
artikel |
37 |
Scifer: An R/Bioconductor package for large-scale integration of Sanger sequencing and flow cytometry data of index-sorted single cells
|
Arcoverde Cerveira, Rodrigo |
|
|
1-2 |
C |
p. |
artikel |
38 |
Structural pre-training improves physical accuracy of antibody structure prediction using deep learning.
|
Kończak, Jarosław |
|
|
1-2 |
C |
p. |
artikel |
39 |
T-cell receptor binding prediction: A machine learning revolution
|
Weber, Anna |
|
|
1-2 |
C |
p. |
artikel |
40 |
The journey towards complete and accurate prediction of HLA antigen presentation
|
Nilsson, Jonas Birkelund |
|
|
1-2 |
C |
p. |
artikel |
41 |
The race to understand immunopathology in COVID-19: Perspectives on the impact of quantitative approaches to understand within-host interactions
|
Gazeau, Sonia |
|
|
1-2 |
C |
p. |
artikel |
42 |
To what extent does MHC binding translate to immunogenicity in humans?
|
Lee, Chloe H. |
|
|
1-2 |
C |
p. |
artikel |
43 |
Transfer learning improves pMHC kinetic stability and immunogenicity predictions
|
Fasoulis, Romanos |
|
|
1-2 |
C |
p. |
artikel |
44 |
Using in silico models to predict lymphocyte activation and development in a data rich era
|
Khakoo, Salim I |
|
|
1-2 |
C |
p. |
artikel |