nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
A convolutional recurrent neural network for strong convective rainfall nowcasting using weather radar data in Southeastern Brazil
|
Caseri, Angelica N. |
|
|
3 |
C |
p. 8-13 |
artikel |
2 |
Advanced geochemical exploration knowledge using machine learning: Prediction of unknown elemental concentrations and operational prioritization of Re-analysis campaigns
|
Zhang, Steven E. |
|
|
3 |
C |
p. 86-100 |
artikel |
3 |
A new correlation for calculating wellhead oil flow rate using artificial neural network
|
Azim, Reda Abdel |
|
|
3 |
C |
p. 1-7 |
artikel |
4 |
Artificial intelligence-based anomaly detection of the Assen iron deposit in South Africa using remote sensing data from the Landsat-8 Operational Land Imager
|
Nwaila, Glen T. |
|
|
3 |
C |
p. 71-85 |
artikel |
5 |
A study on geological structure prediction based on random forest method
|
Chen, Zhen |
|
|
3 |
C |
p. 226-236 |
artikel |
6 |
A study on small magnitude seismic phase identification using 1D deep residual neural network
|
Li, Wei |
|
|
3 |
C |
p. 115-122 |
artikel |
7 |
Attenuation of seismic migration smile artifacts with deep learning
|
Yoo, Jewoo |
|
|
3 |
C |
p. 123-131 |
artikel |
8 |
Ensemble hybrid machine learning methods for gully erosion susceptibility mapping: K-fold cross validation approach
|
Roy, Jagabandhu |
|
|
3 |
C |
p. 28-45 |
artikel |
9 |
Estimation of the effectiveness of multi-criteria decision analysis and machine learning approaches for agricultural land capability in Gangarampur Subdivision, Eastern India
|
Saha, Sunil |
|
|
3 |
C |
p. 179-191 |
artikel |
10 |
Geostatistical semi-supervised learning for spatial prediction
|
Fouedjio, Francky |
|
|
3 |
C |
p. 162-178 |
artikel |
11 |
High resolution pre-stack seismic inversion using few-shot learning
|
Chen, Ting |
|
|
3 |
C |
p. 203-208 |
artikel |
12 |
Integrating the artificial intelligence and hybrid machine learning algorithms for improving the accuracy of spatial prediction of landslide hazards in Kurseong Himalayan Region
|
Saha, Anik |
|
|
3 |
C |
p. 14-27 |
artikel |
13 |
Irregularly sampled seismic data interpolation via wavelet-based convolutional block attention deep learning
|
Lou, Yihuai |
|
|
3 |
C |
p. 192-202 |
artikel |
14 |
Machine learning in petrophysics: Advantages and limitations
|
Xu, Chicheng |
|
|
3 |
C |
p. 157-161 |
artikel |
15 |
MLReal: Bridging the gap between training on synthetic data and real data applications in machine learning
|
Alkhalifah, Tariq |
|
|
3 |
C |
p. 101-114 |
artikel |
16 |
Near-surface velocity estimation using shear-waves and deep-learning with a U-net trained on synthetic data
|
Gupta, Taneesh |
|
|
3 |
C |
p. 209-224 |
artikel |
17 |
Optimized feature selection assists lithofacies machine learning with sparse well log data combined with calculated attributes in a gradational fluvial sequence
|
Wood, David A. |
|
|
3 |
C |
p. 132-147 |
artikel |
18 |
PolarCAP – A deep learning approach for first motion polarity classification of earthquake waveforms
|
Chakraborty, Megha |
|
|
3 |
C |
p. 46-52 |
artikel |
19 |
ResGraphNet: GraphSAGE with embedded residual module for prediction of global monthly mean temperature
|
Chen, Ziwei |
|
|
3 |
C |
p. 148-156 |
artikel |
20 |
Synthetic shear sonic log generation utilizing hybrid machine learning techniques
|
Kim, Jongkook |
|
|
3 |
C |
p. 53-70 |
artikel |
21 |
Thank you reviewers!
|
|
|
|
3 |
C |
p. 225 |
artikel |