nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
A data-driven reduced-order model for stiff chemical kinetics using dynamics-informed training
|
Vijayarangan, Vijayamanikandan |
|
|
15 |
C |
p. |
artikel |
2 |
AI-enabled materials discovery for advanced ceramic electrochemical cells
|
Bello, Idris Temitope |
|
|
15 |
C |
p. |
artikel |
3 |
A machine learning framework for remaining useful lifetime prediction of li-ion batteries using diverse neural networks
|
Lee, Junghwan |
|
|
15 |
C |
p. |
artikel |
4 |
An explainable AI framework for robust and transparent data-driven wind turbine power curve models
|
Letzgus, Simon |
|
|
15 |
C |
p. |
artikel |
5 |
An explainable AI model for power plant NOx emission control
|
Zhou, Yuanye |
|
|
15 |
C |
p. |
artikel |
6 |
A robust autoregressive long-term spatiotemporal forecasting framework for surrogate-based turbulent combustion modeling via deep learning
|
Wu, Sipei |
|
|
15 |
C |
p. |
artikel |
7 |
Comparison of optimizers for model predictive thermal control of buildings
|
Andersen, Torben |
|
|
15 |
C |
p. |
artikel |
8 |
Current trends on the use of deep learning methods for image analysis in energy applications
|
Casini, Mattia |
|
|
15 |
C |
p. |
artikel |
9 |
Development and assessment of artificial neural network models for direct normal solar irradiance forecasting using operational numerical weather prediction data
|
Pereira, Sara |
|
|
15 |
C |
p. |
artikel |
10 |
Development and evaluation of a vision driven sensor for estimating fuel feeding rates in combustion and gasification processes
|
Ögren, Yngve |
|
|
15 |
C |
p. |
artikel |
11 |
Development of surrogate-optimization models for a novel transcritical power cycle integrated with a small modular reactor
|
Zhang, Yili |
|
|
15 |
C |
p. |
artikel |
12 |
Effective thermal conductivity estimation using a convolutional neural network and its application in topology optimization
|
Adam, Andre |
|
|
15 |
C |
p. |
artikel |
13 |
Energy management of buildings with energy storage and solar photovoltaic: A diversity in experience approach for deep reinforcement learning agents
|
Hussain, Akhtar |
|
|
15 |
C |
p. |
artikel |
14 |
Enhancing hourly heat demand prediction through artificial neural networks: A national level case study
|
Zhang, Meng |
|
|
15 |
C |
p. |
artikel |
15 |
Generation of meaningful synthetic sensor data — Evaluated with a reliable transferability methodology
|
Meiser, Michael |
|
|
15 |
C |
p. |
artikel |
16 |
Identifying representative days of solar irradiance and wind speed in Brazil using machine learning techniques
|
Ribeiro, Rafaela |
|
|
15 |
C |
p. |
artikel |
17 |
Identifying the validity domain of machine learning models in building energy systems
|
Rätz, Martin |
|
|
15 |
C |
p. |
artikel |
18 |
Multi-objective performance optimization & thermodynamic analysis of solar powered supercritical CO2 power cycles using machine learning methods & genetic algorithm
|
Turja, Asif Iqbal |
|
|
15 |
C |
p. |
artikel |
19 |
Reconstructing hourly residential electrical load profiles for Renewable Energy Communities using non-intrusive machine learning techniques
|
Giannuzzo, Lorenzo |
|
|
15 |
C |
p. |
artikel |
20 |
Reviewing 40 years of artificial intelligence applied to power systems – A taxonomic perspective
|
Heymann, F. |
|
|
15 |
C |
p. |
artikel |
21 |
Site adaptation with machine learning for a Northern Europe gridded global solar irradiance product
|
Zainali, Sebastian |
|
|
15 |
C |
p. |
artikel |
22 |
Synthetic demand data generation for individual electricity consumers: Inpainting
|
Dobrovolskij, Dascha |
|
|
15 |
C |
p. |
artikel |
23 |
Total process of fault diagnosis for wind turbine gearbox, from the perspective of combination with feature extraction and machine learning: A review
|
Xu, Xinhua |
|
|
15 |
C |
p. |
artikel |
24 |
VISION-iT: A Framework for Digitizing Bubbles and Droplets
|
Suh, Youngjoon |
|
|
15 |
C |
p. |
artikel |