nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
A comparative analysis of paddy crop biotic stress classification using pre-trained deep neural networks
|
Malvade, Naveen N. |
|
|
6 |
C |
p. 167-175 |
artikel |
2 |
Analysis of land surface temperature using Geospatial technologies in Gida Kiremu, Limu, and Amuru District, Western Ethiopia
|
Moisa, Mitiku Badasa |
|
|
6 |
C |
p. 90-99 |
artikel |
3 |
Assessing the performance of YOLOv5 algorithm for detecting volunteer cotton plants in corn fields at three different growth stages
|
Yadav, Pappu Kumar |
|
|
6 |
C |
p. 292-303 |
artikel |
4 |
A study on deep learning algorithm performance on weed and crop species identification under different image background
|
G C, Sunil |
|
|
6 |
C |
p. 242-256 |
artikel |
5 |
A systematic review of machine learning techniques for cattle identification: Datasets, methods and future directions
|
Hossain, Md Ekramul |
|
|
6 |
C |
p. 138-155 |
artikel |
6 |
Automatic marker-free registration of single tree point-cloud data based on rotating projection
|
Xu, Xiuxian |
|
|
6 |
C |
p. 176-188 |
artikel |
7 |
Deep convolutional neural network for damaged vegetation segmentation from RGB images based on virtual NIR-channel estimation
|
Picon, Artzai |
|
|
6 |
C |
p. 199-210 |
artikel |
8 |
Deep convolutional neural network models for weed detection in polyhouse grown bell peppers
|
Subeesh, A. |
|
|
6 |
C |
p. 47-54 |
artikel |
9 |
Deep learning based computer vision approaches for smart agricultural applications
|
Dhanya, V.G. |
|
|
6 |
C |
p. 211-229 |
artikel |
10 |
Developing a multi-label tinyML machine learning model for an active and optimized greenhouse microclimate control from multivariate sensed data
|
Ihoume, Ilham |
|
|
6 |
C |
p. 129-137 |
artikel |
11 |
Disease detection, severity prediction, and crop loss estimation in MaizeCrop using deep learning
|
Kundu, Nidhi |
|
|
6 |
C |
p. 276-291 |
artikel |
12 |
Durum wheat yield forecasting using machine learning
|
Chergui, Nabila |
|
|
6 |
C |
p. 156-166 |
artikel |
13 |
Effect and economic benefit of precision seeding and laser land leveling for winter wheat in the middle of China
|
Chen, Jing |
|
|
6 |
C |
p. 1-9 |
artikel |
14 |
Evaluation of model generalization for growing plants using conditional learning
|
Ullah, Hafiz Sami |
|
|
6 |
C |
p. 189-198 |
artikel |
15 |
Examining the interplay between artificial intelligence and the agri-food industry
|
Rejeb, Abderahman |
|
|
6 |
C |
p. 111-128 |
artikel |
16 |
Explainable artificial intelligence and interpretable machine learning for agricultural data analysis
|
Ryo, Masahiro |
|
|
6 |
C |
p. 257-265 |
artikel |
17 |
Few-shot learning for biotic stress classification of coffee leaves
|
Tassis, Lucas M. |
|
|
6 |
C |
p. 55-67 |
artikel |
18 |
Land suitability analysis for maize production using geospatial technologies in the Didessa watershed, Ethiopia
|
Moisa, Mitiku Badasa |
|
|
6 |
C |
p. 34-46 |
artikel |
19 |
Non-destructive silkworm pupa gender classification with X-ray images using ensemble learning
|
Thomas, Sania |
|
|
6 |
C |
p. 100-110 |
artikel |
20 |
Nutrient optimization for plant growth in Aquaponic irrigation using Machine Learning for small training datasets
|
Dhal, Sambandh Bhusan |
|
|
6 |
C |
p. 68-76 |
artikel |
21 |
Optimization techniques in deep convolutional neuronal networks applied to olive diseases classification
|
Raouhi, El Mehdi |
|
|
6 |
C |
p. 77-89 |
artikel |
22 |
Predicting the true density of commercial biomass pellets using near-infrared hyperspectral imaging
|
Pitak, Lakkana |
|
|
6 |
C |
p. 266-275 |
artikel |
23 |
Prediction of exchangeable potassium in soil through mid-infrared spectroscopy and deep learning: From prediction to explainability
|
Albinet, Franck |
|
|
6 |
C |
p. 230-241 |
artikel |
24 |
Review of agricultural IoT technology
|
Xu, Jinyuan |
|
|
6 |
C |
p. 10-22 |
artikel |
25 |
Transfer Learning for Multi-Crop Leaf Disease Image Classification using Convolutional Neural Network VGG
|
Paymode, Ananda S. |
|
|
6 |
C |
p. 23-33 |
artikel |