nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
Application of an automatic segmentation method for evaluating cardiac structure doses received by breast radiotherapy patients
|
Jung, Jae Won |
|
|
19 |
C |
p. 138-144 |
artikel |
2 |
A proof of concept treatment planning study of gated proton radiotherapy for cardiac soft tissue sarcoma
|
Lee, Hyeri |
|
|
19 |
C |
p. 78-84 |
artikel |
3 |
Automated clinical target volume delineation using deep 3D neural networks in radiation therapy of Non-small Cell Lung Cancer
|
Xie, Yunhe |
|
|
19 |
C |
p. 131-137 |
artikel |
4 |
Automatic 3D Monte-Carlo-based secondary dose calculation for online verification of 1.5 T magnetic resonance imaging guided radiotherapy
|
Nachbar, Marcel |
|
|
19 |
C |
p. 6-12 |
artikel |
5 |
Characterization of automatic treatment planning approaches in radiotherapy
|
Wortel, Geert |
|
|
19 |
C |
p. 60-65 |
artikel |
6 |
Clinical experience and cost evaluation of magnetic resonance imaging -only workflow in radiation therapy planning of prostate cancer
|
Keyriläinen, Jani |
|
|
19 |
C |
p. 66-71 |
artikel |
7 |
Comparison of atlas-based auto-segmentation accuracy for radiotherapy in prostate cancer
|
Aoyama, Takahiro |
|
|
19 |
C |
p. 126-130 |
artikel |
8 |
Deep learning auto-segmentation and automated treatment planning for trismus risk reduction in head and neck cancer radiotherapy
|
Thor, Maria |
|
|
19 |
C |
p. 96-101 |
artikel |
9 |
Feasibility of ablative stereotactic body radiation therapy of pancreas cancer patients on a 1.5 Tesla magnetic resonance-linac system using abdominal compression
|
Tyagi, Neelam |
|
|
19 |
C |
p. 53-59 |
artikel |
10 |
Imaging carbonic anhydrase IX as a method for monitoring hypoxia-related radioresistance in preclinical head and neck cancer models
|
Huizing, Fokko J. |
|
|
19 |
C |
p. 145-150 |
artikel |
11 |
Machine learning applications in radiation oncology
|
Field, Matthew |
|
|
19 |
C |
p. 13-24 |
artikel |
12 |
Mesorectal shape variation in rectal cancer radiotherapy in prone position using a belly board
|
Cox, Maurice C. |
|
|
19 |
C |
p. 120-125 |
artikel |
13 |
On-line daily plan optimization combined with a virtual couch shift procedure to address intrafraction motion in prostate magnetic resonance guided radiotherapy
|
de Muinck Keizer, Daan M. |
|
|
19 |
C |
p. 90-95 |
artikel |
14 |
Oropharyngeal primary tumor segmentation for radiotherapy planning on magnetic resonance imaging using deep learning
|
Rodríguez Outeiral, Roque |
|
|
19 |
C |
p. 39-44 |
artikel |
15 |
Out-of-field dose in stereotactic radiotherapy for paediatric patients
|
Garrett, Lachlan |
|
|
19 |
C |
p. 1-5 |
artikel |
16 |
Patient position verification in magnetic-resonance imaging only radiotherapy of anal and rectal cancers
|
Bird, David |
|
|
19 |
C |
p. 72-77 |
artikel |
17 |
Professional practice changes in radiotherapy physics during the COVID-19 pandemic
|
Bertholet, Jenny |
|
|
19 |
C |
p. 25-32 |
artikel |
18 |
Prostate specific membrane antigen positron emission tomography for lesion-directed high-dose-rate brachytherapy dose escalation
|
Smith, Christopher W. |
|
|
19 |
C |
p. 102-107 |
artikel |
19 |
Quantification of the uncertainties within the radiotherapy dosimetry chain and their impact on tumour control
|
Bolt, Matthew |
|
|
19 |
C |
p. 33-38 |
artikel |
20 |
Risk of radiation-induced second malignant neoplasms from photon and proton radiotherapy in paediatric abdominal neuroblastoma
|
Taylor, Sophie |
|
|
19 |
C |
p. 45-52 |
artikel |
21 |
Source strength determination in iridium-192 and cobalt-60 brachytherapy: A European survey on the level of agreement between clinical measurements and manufacturer certificates
|
Vijande, Javier |
|
|
19 |
C |
p. 108-111 |
artikel |
22 |
The impact of image acquisition time on registration, delineation and image quality for magnetic resonance guided radiotherapy of prostate cancer patients
|
Nowee, Marlies E. |
|
|
19 |
C |
p. 85-89 |
artikel |
23 |
Volumetric modulated arc therapy dose prediction and deliverable treatment plan generation for prostate cancer patients using a densely connected deep learning model
|
Lempart, Michael |
|
|
19 |
C |
p. 112-119 |
artikel |