nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
A perspective on regression and Bayesian approaches for system identification of pattern formation dynamics
|
Wang, Zhenlin |
|
|
10 |
3 |
p. 188-194 |
artikel |
2 |
Classifying wakes produced by self-propelled fish-like swimmers using neural networks
|
Li, Binglin |
|
|
10 |
3 |
p. 149-154 |
artikel |
3 |
Deep density estimation via invertible block-triangular mapping
|
Tang, Keju |
|
|
10 |
3 |
p. 143-148 |
artikel |
4 |
Learning material law from displacement fields by artificial neural network
|
Yang, Hang |
|
|
10 |
3 |
p. 202-206 |
artikel |
5 |
Mechanistic Machine Learning: Theory, Methods, and Applications
|
|
|
|
10 |
3 |
p. 141-142 |
artikel |
6 |
Multi-fidelity Gaussian process based empirical potential development for Si:H nanowires
|
Kim, Moonseop |
|
|
10 |
3 |
p. 195-201 |
artikel |
7 |
Nonnegativity-enforced Gaussian process regression
|
Pensoneault, Andrew |
|
|
10 |
3 |
p. 182-187 |
artikel |
8 |
Physics-constrained bayesian neural network for fluid flow reconstruction with sparse and noisy data
|
Sun, Luning |
|
|
10 |
3 |
p. 161-169 |
artikel |
9 |
Physics-constrained indirect supervised learning
|
Chen, Yuntian |
|
|
10 |
3 |
p. 155-160 |
artikel |
10 |
Physics-informed deep learning for incompressible laminar flows
|
Rao, Chengping |
|
|
10 |
3 |
p. 207-212 |
artikel |
11 |
Reducing parameter space for neural network training
|
Qin, Tong |
|
|
10 |
3 |
p. 170-181 |
artikel |