nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
Activity and stability of cobalt phosphides for hydrogen evolution upon water splitting
|
Ha, Don-Hyung |
|
2016 |
29 |
C |
p. 37-45 |
artikel |
2 |
Advanced catalyst supports for PEM fuel cell cathodes
|
Du, Lei |
|
2016 |
29 |
C |
p. 314-322 |
artikel |
3 |
A scenario for oxygen reduction in alkaline media
|
Ignaczak, Anna |
|
2016 |
29 |
C |
p. 362-368 |
artikel |
4 |
Beyond the top of the volcano? – A unified approach to electrocatalytic oxygen reduction and oxygen evolution
|
Busch, Michael |
|
2016 |
29 |
C |
p. 126-135 |
artikel |
5 |
Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition
|
Wu, Gang |
|
2016 |
29 |
C |
p. 83-110 |
artikel |
6 |
Characterization of oxygenated species at water/Pt(111) interfaces from DFT energetics and XPS simulations
|
Zeng, Zhenhua |
|
2016 |
29 |
C |
p. 369-377 |
artikel |
7 |
Dealloyed Pt-based core-shell oxygen reduction electrocatalysts
|
Strasser, Peter |
|
2016 |
29 |
C |
p. 166-177 |
artikel |
8 |
Design principles for hydrogen evolution reaction catalyst materials
|
Strmcnik, Dusan |
|
2016 |
29 |
C |
p. 29-36 |
artikel |
9 |
Dimethyl ether electro-oxidation on platinum surfaces
|
Roling, Luke T. |
|
2016 |
29 |
C |
p. 428-438 |
artikel |
10 |
Durability of platinum-based fuel cell electrocatalysts: Dissolution of bulk and nanoscale platinum
|
Cherevko, Serhiy |
|
2016 |
29 |
C |
p. 275-298 |
artikel |
11 |
Editorial Board & Aims and Scope
|
|
|
2016 |
29 |
C |
p. IFC |
artikel |
12 |
Electrocatalysis and bioelectrocatalysis – Distinction without a difference
|
Masa, Justus |
|
2016 |
29 |
C |
p. 466-475 |
artikel |
13 |
Electrocatalysts by atomic layer deposition for fuel cell applications
|
Cheng, Niancai |
|
2016 |
29 |
C |
p. 220-242 |
artikel |
14 |
Electrochemical CO2 reduction: Electrocatalyst, reaction mechanism, and process engineering
|
Lu, Qi |
|
2016 |
29 |
C |
p. 439-456 |
artikel |
15 |
Fuel cell catalyst degradation: Identical location electron microscopy and related methods
|
Arenz, Matthias |
|
2016 |
29 |
C |
p. 299-313 |
artikel |
16 |
How theory and simulation can drive fuel cell electrocatalysis
|
Eslamibidgoli, Mohammad J. |
|
2016 |
29 |
C |
p. 334-361 |
artikel |
17 |
In-situ FTIR spectroscopic studies of electrocatalytic reactions and processes
|
Ye, Jin-Yu |
|
2016 |
29 |
C |
p. 414-427 |
artikel |
18 |
Interfacial effects on the catalysis of the hydrogen evolution, oxygen evolution and CO2-reduction reactions for (co-)electrolyzer development
|
Herranz, Juan |
|
2016 |
29 |
C |
p. 4-28 |
artikel |
19 |
Is iron involved in the lack of stability of Fe/N/C electrocatalysts used to reduce oxygen at the cathode of PEM fuel cells?
|
Zhang, Gaixia |
|
2016 |
29 |
C |
p. 111-125 |
artikel |
20 |
Linking structure to function: The search for active sites in non-platinum group metal oxygen reduction reaction catalysts
|
Holby, Edward F. |
|
2016 |
29 |
C |
p. 54-64 |
artikel |
21 |
Mesoporous platinum nickel thin films with double gyroid morphology for the oxygen reduction reaction
|
Kibsgaard, Jakob |
|
2016 |
29 |
C |
p. 243-248 |
artikel |
22 |
MoSSe@reduced graphene oxide nanocomposite heterostructures as efficient and stable electrocatalysts for the hydrogen evolution reaction
|
Konkena, Bharathi |
|
2016 |
29 |
C |
p. 46-53 |
artikel |
23 |
Nitrate reduction pathways on Cu single crystal surfaces: Effect of oxide and Cl−
|
Butcher Jr., Dennis P. |
|
2016 |
29 |
C |
p. 457-465 |
artikel |
24 |
Particle-size effect of Pt cathode catalysts on durability in fuel cells
|
Yano, Hiroshi |
|
2016 |
29 |
C |
p. 323-333 |
artikel |
25 |
Pd skin on AuCu intermetallic nanoparticles: A highly active electrocatalyst for oxygen reduction reaction in alkaline media
|
Wang, Gongwei |
|
2016 |
29 |
C |
p. 268-274 |
artikel |
26 |
Performance of titanium oxynitrides in the electrocatalytic oxygen evolution reaction
|
Gebauer, C. |
|
2016 |
29 |
C |
p. 136-148 |
artikel |
27 |
Prelude: The renaissance of electrocatalysis
|
Shao, Yuyan |
|
2016 |
29 |
C |
p. 1-3 |
artikel |
28 |
Probing the nanoscale structure of the catalytically active overlayer on Pt alloys with rare earths
|
Pedersen, Anders F. |
|
2016 |
29 |
C |
p. 249-260 |
artikel |
29 |
Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction
|
Zhang, Lulu |
|
2016 |
29 |
C |
p. 198-219 |
artikel |
30 |
Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction
|
Lv, Haifeng |
|
2016 |
29 |
C |
p. 149-165 |
artikel |
31 |
Recent advances in the organic solution phase synthesis of metal nanoparticles and their electrocatalysis for energy conversion reactions
|
Li, Qing |
|
2016 |
29 |
C |
p. 178-197 |
artikel |
32 |
Spectroscopic insights into the nature of active sites in iron–nitrogen–carbon electrocatalysts for oxygen reduction in acid
|
Jia, Qingying |
|
2016 |
29 |
C |
p. 65-82 |
artikel |
33 |
Surface X-ray diffraction studies of single crystal electrocatalysts
|
Gründer, Yvonne |
|
2016 |
29 |
C |
p. 378-393 |
artikel |
34 |
Tuning electrocatalytic activity of Pt monolayer shell by bimetallic Ir-M (M=Fe, Co, Ni or Cu) cores for the oxygen reduction reaction
|
Kuttiyiel, Kurian A. |
|
2016 |
29 |
C |
p. 261-267 |
artikel |
35 |
Ultrahigh vacuum and electrocatalysis – The powers of quantitative surface imaging
|
P. Mercer, Michael |
|
2016 |
29 |
C |
p. 394-413 |
artikel |