nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
Addressing signal alterations induced in CT images by deep learning processing: A preliminary phantom study
|
Doria, Sandra |
|
|
83 |
C |
p. 88-100 |
artikel |
2 |
A deep learning classifier for digital breast tomosynthesis
|
Ricciardi, R. |
|
|
83 |
C |
p. 184-193 |
artikel |
3 |
AI applications to medical images: From machine learning to deep learning
|
Castiglioni, Isabella |
|
|
83 |
C |
p. 9-24 |
artikel |
4 |
Aims & Scope & Editorial Board
|
|
|
|
83 |
C |
p. i |
artikel |
5 |
Artificial intelligence and machine learning for medical imaging: A technology review
|
Barragán-Montero, Ana |
|
|
83 |
C |
p. 242-256 |
artikel |
6 |
Artificial intelligence applications in medical imaging: A review of the medical physics research in Italy
|
Avanzo, Michele |
|
|
83 |
C |
p. 221-241 |
artikel |
7 |
Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization
|
Papadimitroulas, Panagiotis |
|
|
83 |
C |
p. 108-121 |
artikel |
8 |
Automatic deep learning-based pleural effusion classification in lung ultrasound images for respiratory pathology diagnosis
|
Tsai, Chung-Han |
|
|
83 |
C |
p. 38-45 |
artikel |
9 |
Automating chest radiograph imaging quality control
|
Nousiainen, Katri |
|
|
83 |
C |
p. 138-145 |
artikel |
10 |
Basic of machine learning and deep learning in imaging for medical physicists
|
Manco, Luigi |
|
|
83 |
C |
p. 194-205 |
artikel |
11 |
Benign-malignant pulmonary nodule classification in low-dose CT with convolutional features
|
Astaraki, Mehdi |
|
|
83 |
C |
p. 146-153 |
artikel |
12 |
Breast glandularity and mean glandular dose assessment using a deep learning framework: Virtual patients study
|
Massera, Rodrigo T. |
|
|
83 |
C |
p. 264-277 |
artikel |
13 |
Conditional generative adversarial networks to generate pseudo low monoenergetic CT image from a single-tube voltage CT scanner
|
Funama, Yoshinori |
|
|
83 |
C |
p. 46-51 |
artikel |
14 |
Current applications of deep-learning in neuro-oncological MRI
|
Zegers, C.M.L. |
|
|
83 |
C |
p. 161-173 |
artikel |
15 |
Data preparation for artificial intelligence in medical imaging: A comprehensive guide to open-access platforms and tools
|
Diaz, Oliver |
|
|
83 |
C |
p. 25-37 |
artikel |
16 |
Deep learning dose prediction for IMRT of esophageal cancer: The effect of data quality and quantity on model performance
|
Barragán-Montero, Ana M. |
|
|
83 |
C |
p. 52-63 |
artikel |
17 |
Enterprise imaging and big data: A review from a medical physics perspective
|
McCarthy, Nicholas |
|
|
83 |
C |
p. 206-220 |
artikel |
18 |
Expanding the medical physicist curricular and professional programme to include Artificial Intelligence
|
Zanca, F. |
|
|
83 |
C |
p. 174-183 |
artikel |
19 |
Focus issue: Artificial intelligence in medical physics
|
Zanca, F. |
|
|
83 |
C |
p. 287-291 |
artikel |
20 |
Machine learning in Magnetic Resonance Imaging: Image reconstruction
|
Montalt-Tordera, Javier |
|
|
83 |
C |
p. 79-87 |
artikel |
21 |
Meniscal lesion detection and characterization in adult knee MRI: A deep learning model approach with external validation
|
Rizk, B. |
|
|
83 |
C |
p. 64-71 |
artikel |
22 |
Performance of an artificial intelligence tool with real-time clinical workflow integration – Detection of intracranial hemorrhage and pulmonary embolism
|
Buls, Nico |
|
|
83 |
C |
p. 154-160 |
artikel |
23 |
Procurement, commissioning and QA of AI based solutions: An MPE’s perspective on introducing AI in clinical practice
|
Bosmans, Hilde |
|
|
83 |
C |
p. 257-263 |
artikel |
24 |
Radiation therapy dose prediction for left-sided breast cancers using two-dimensional and three-dimensional deep learning models
|
Hedden, Natasha |
|
|
83 |
C |
p. 101-107 |
artikel |
25 |
Radiomics classifier to quantify automatic segmentation quality of cardiac sub-structures for radiotherapy treatment planning
|
Maffei, Nicola |
|
|
83 |
C |
p. 278-286 |
artikel |
26 |
Requirements and reliability of AI in the medical context
|
Balagurunathan, Yoganand |
|
|
83 |
C |
p. 72-78 |
artikel |
27 |
The EU medical device regulation: Implications for artificial intelligence-based medical device software in medical physics
|
Beckers, R. |
|
|
83 |
C |
p. 1-8 |
artikel |
28 |
The promise of artificial intelligence and deep learning in PET and SPECT imaging
|
Arabi, Hossein |
|
|
83 |
C |
p. 122-137 |
artikel |