nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
A coupled deep learning approach for shield moving performance prediction of underground tunnel construction
|
Lin, Song-Shun |
|
|
123 |
C |
p. 125-139 |
artikel |
2 |
A new method to promptly evaluate spatial earthquake probability mapping using an explainable artificial intelligence (XAI) model
|
Jena, Ratiranjan |
|
|
123 |
C |
p. 54-67 |
artikel |
3 |
A novel method using explainable artificial intelligence (XAI)-based Shapley Additive Explanations for spatial landslide prediction using Time-Series SAR dataset
|
Al-Najjar, Husam A.H. |
|
|
123 |
C |
p. 107-124 |
artikel |
4 |
Assessment of landslide susceptibility along mountain highways based on different machine learning algorithms and mapping units by hybrid factors screening and sample optimization
|
Sun, Deliang |
|
|
123 |
C |
p. 89-106 |
artikel |
5 |
Assessment of liquefaction-induced lateral spread using soft computing approaches
|
Chen, Zhixiong |
|
|
123 |
C |
p. 265-279 |
artikel |
6 |
BayLUP: A Bayesian framework for conditional random field simulation of the liquefaction-induced settlement considering statistical uncertainty and model error
|
Miao, Cong |
|
|
123 |
C |
p. 140-163 |
artikel |
7 |
Comparison of trend models for geotechnical spatial variability: Sparse Bayesian Learning vs. Gaussian Process Regression
|
Ching, Jianye |
|
|
123 |
C |
p. 174-183 |
artikel |
8 |
Data driven models: Introduction
|
Zhang, Wengang |
|
|
123 |
C |
p. 1-2 |
artikel |
9 |
Deep learning for magnitude prediction in earthquake early warning
|
Wang, Yanwei |
|
|
123 |
C |
p. 164-173 |
artikel |
10 |
Editorial Board (IFC)
|
|
|
|
123 |
C |
p. IFC |
artikel |
11 |
Efficient time-variant reliability analysis of Bazimen landslide in the Three Gorges Reservoir Area using XGBoost and LightGBM algorithms
|
Zhang, Wengang |
|
|
123 |
C |
p. 41-53 |
artikel |
12 |
Machine learning-based estimation of soil’s true air-entry value from GSD curves
|
Es-haghi, Mohammad Sadegh |
|
|
123 |
C |
p. 280-292 |
artikel |
13 |
Machine learning-based landslide susceptibility assessment with optimized ratio of landslide to non-landslide samples
|
Yang, Can |
|
|
123 |
C |
p. 198-216 |
artikel |
14 |
Machine learning powered high-resolution co-seismic landslide detection
|
Wang, Haojie |
|
|
123 |
C |
p. 217-237 |
artikel |
15 |
Prediction of wall deflection induced by braced excavation in spatially variable soils via convolutional neural network
|
Wu, Chongzhi |
|
|
123 |
C |
p. 184-197 |
artikel |
16 |
Quantification of model uncertainty and variability for landslide displacement prediction based on Monte Carlo simulation
|
Wang, Luqi |
|
|
123 |
C |
p. 27-40 |
artikel |
17 |
Safety analysis of a deep foundation ditch using deep learning methods
|
Hong, Chengyu |
|
|
123 |
C |
p. 16-26 |
artikel |
18 |
Sensitivity of the land surface hydrological cycle to human activities in China
|
Luo, Kaisheng |
|
|
123 |
C |
p. 255-264 |
artikel |
19 |
Support vector regression with heuristic optimization algorithms for predicting the ground surface displacement induced by EPB shield tunneling
|
Lu, Dechun |
|
|
123 |
C |
p. 3-15 |
artikel |
20 |
Transfer learning improves landslide susceptibility assessment
|
Wang, Haojie |
|
|
123 |
C |
p. 238-254 |
artikel |
21 |
Vulnerability assessment of drought in India: Insights from meteorological, hydrological, agricultural and socio-economic perspectives
|
Saha, Asish |
|
|
123 |
C |
p. 68-88 |
artikel |