nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
Achieving long-term stability of thin-film electrodes for neurostimulation
|
Oldroyd, Poppy |
|
|
139 |
C |
p. 65-81 |
artikel |
2 |
An electro-spun tri-component polymer biomaterial with optoelectronic properties for neuronal differentiation
|
Yuan, Bowei |
|
|
139 |
C |
p. 82-90 |
artikel |
3 |
Anisotropic conductive reduced graphene oxide/silk matrices promote post-infarction myocardial function by restoring electrical integrity
|
Zhao, Guoxu |
|
|
139 |
C |
p. 190-203 |
artikel |
4 |
Bio-inspired flexible electronics for smart E-skin
|
Nie, Baoqing |
|
|
139 |
C |
p. 280-295 |
artikel |
5 |
Conductive and Electroactive Biomaterials and Bioelectronics
|
Nikkhah, Mehdi |
|
|
139 |
C |
p. 1-3 |
artikel |
6 |
Conductive biomaterials for cardiac repair: A review
|
Li, Yimeng |
|
|
139 |
C |
p. 157-178 |
artikel |
7 |
2D Ti3C2TxMXene couples electrical stimulation to promote proliferation and neural differentiation of neural stem cells
|
Guo, Rongrong |
|
|
139 |
C |
p. 105-117 |
artikel |
8 |
Editorial Board
|
|
|
|
139 |
C |
p. i |
artikel |
9 |
Effects of electrically conductive nano-biomaterials on regulating cardiomyocyte behavior for cardiac repair and regeneration
|
Morsink, Margaretha |
|
|
139 |
C |
p. 141-156 |
artikel |
10 |
Electrically conductive 3D printed Ti3C2T x MXene-PEG composite constructs for cardiac tissue engineering
|
Basara, Gozde |
|
|
139 |
C |
p. 179-189 |
artikel |
11 |
Electrical stimulation of titanium to promote stem cell orientation, elongation and osteogenesis
|
Khaw, Juan Shong |
|
|
139 |
C |
p. 204-217 |
artikel |
12 |
Electroconductive biomaterials for cardiac tissue engineering
|
Esmaeili, Hamid |
|
|
139 |
C |
p. 118-140 |
artikel |
13 |
Electrospun conductive nanofiber yarns for accelerating mesenchymal stem cells differentiation and maturation into Schwann cell-like cells under a combination of electrical stimulation and chemical induction
|
Wu, Shaohua |
|
|
139 |
C |
p. 91-104 |
artikel |
14 |
Exploring electroactive microenvironments in polymer-based nanocomposites to sensitize bacterial cells to low-dose embedded silver nanoparticles
|
Moreira, Joana |
|
|
139 |
C |
p. 237-248 |
artikel |
15 |
Mechanical writing of electrical polarization in poly (L-lactic) acid
|
Barroca, Nathalie |
|
|
139 |
C |
p. 249-258 |
artikel |
16 |
Rational design of injectable conducting polymer-based hydrogels for tissue engineering
|
Yu, Chaojie |
|
|
139 |
C |
p. 4-21 |
artikel |
17 |
Regenerative rehabilitation with conductive biomaterials for spinal cord injury
|
Kiyotake, Emi A. |
|
|
139 |
C |
p. 43-64 |
artikel |
18 |
Self-healing, stretchable, and highly adhesive hydrogels for epidermal patch electrodes
|
Zhou, Xin |
|
|
139 |
C |
p. 296-306 |
artikel |
19 |
The influence of physicochemical properties on the processibility of conducting polymers: A bioelectronics perspective
|
Heck, Julian |
|
|
139 |
C |
p. 259-279 |
artikel |
20 |
Towards the translation of electroconductive organic materials for regeneration of neural tissues
|
Manousiouthakis, Eleana |
|
|
139 |
C |
p. 22-42 |
artikel |
21 |
Ultrasound-responsive nutlin-loaded nanoparticles for combined chemotherapy and piezoelectric treatment of glioblastoma cells
|
Pucci, Carlotta |
|
|
139 |
C |
p. 218-236 |
artikel |