nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
Combinatorial metabolic engineering of Bacillus subtilis for de novo production of polymyxin B
|
Sun, Hui-Zhong |
|
|
83 |
C |
p. 123-136 |
artikel |
2 |
Corrigendum to “Cyclo-diphenylalanine Production in Aspergillus nidulans through Stepwise Metabolic Engineering” [Metab. Eng. 82 (2024) 147–156]
|
Liu, Xiaolin |
|
|
83 |
C |
p. 216 |
artikel |
3 |
Corrigendum to “Self-controlled in silico gene knockdown strategies to enhance the sustainable production of heterologous terpenoid by Saccharomyces cerevisiae” [Metab. Eng. 83 (2024) 172–182]
|
Zhang, Na |
|
|
83 |
C |
p. 217 |
artikel |
4 |
Developing the E. coli platform for efficient production of UMP-derived chemicals
|
Yu, Le |
|
|
83 |
C |
p. 61-74 |
artikel |
5 |
Editorial Board
|
|
|
|
83 |
C |
p. ii |
artikel |
6 |
Efficient production of (S)-limonene and geraniol in Saccharomyces cerevisiae through the utilization of an Erg20 mutant with enhanced GPP accumulation capability
|
Bernard, Armand |
|
|
83 |
C |
p. 183-192 |
artikel |
7 |
Elucidating uptake and metabolic fate of dipeptides in CHO cell cultures using 13C labeling experiments and kinetic modeling
|
Naik, Harnish Mukesh |
|
|
83 |
C |
p. 12-23 |
artikel |
8 |
Engineering a solar formic acid/pentose (SFAP) pathway in Escherichia coli for lactic acid production
|
Zhang, Yajing |
|
|
83 |
C |
p. 150-159 |
artikel |
9 |
Engineering the cellulolytic bacterium, Clostridium thermocellum, to co-utilize hemicellulose
|
Chou, Katherine J. |
|
|
83 |
C |
p. 193-205 |
artikel |
10 |
Genome-wide host-pathway interactions affecting cis-cis-muconic acid production in yeast
|
Cachera, Paul |
|
|
83 |
C |
p. 75-85 |
artikel |
11 |
Leveraging a Y. lipolytica naringenin chassis for biosynthesis of apigenin and associated glucoside
|
Marsan, Celeste B. |
|
|
83 |
C |
p. 1-11 |
artikel |
12 |
Metabolic engineering of Escherichia coli for high-level production of the biodegradable polyester monomer 2-pyrone-4,6-dicarboxylic acid
|
Wu, Fengli |
|
|
83 |
C |
p. 52-60 |
artikel |
13 |
Modularized Engineering of Shewanella oneidensis MR-1 for Efficient and Directional Synthesis of 5-Aminolevulinic Acid
|
Wu, Jie |
|
|
83 |
C |
p. 206-215 |
artikel |
14 |
Nature as blueprint: Global phenotype engineering of CHO production cells based on a multi-omics comparison with plasma cells
|
Raab, Nadja |
|
|
83 |
C |
p. 110-122 |
artikel |
15 |
Parageobacillus thermoglucosidasius as an emerging thermophilic cell factory
|
Paredes-Barrada, Miguel |
|
|
83 |
C |
p. 39-51 |
artikel |
16 |
Repurposing plant hormone receptors as chemically-inducible genetic switches for dynamic regulation in yeast
|
Wei, Shuang |
|
|
83 |
C |
p. 102-109 |
artikel |
17 |
Resource allocation modeling for autonomous prediction of plant cell phenotypes
|
Goelzer, Anne |
|
|
83 |
C |
p. 86-101 |
artikel |
18 |
Rethinking 13C-metabolic flux analysis – The Bayesian way of flux inference
|
Theorell, Axel |
|
|
83 |
C |
p. 137-149 |
artikel |
19 |
Revealing the dynamics and mechanisms of bacterial interactions in cheese production with metabolic modelling
|
Lecomte, Maxime |
|
|
83 |
C |
p. 24-38 |
artikel |
20 |
Self-controlled in silico gene knockdown strategies to enhance the sustainable production of heterologous terpenoid by Saccharomyces cerevisiae
|
Zhang, Na |
|
|
83 |
C |
p. 172-182 |
artikel |
21 |
Serial adaptive laboratory evolution enhances mixed carbon metabolic capacity of Escherichia coli
|
Kim, Kangsan |
|
|
83 |
C |
p. 160-171 |
artikel |