nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
A hybrid approach to automatic de-identification of psychiatric notes
|
Lee, Hee-Jin |
|
|
75 |
S |
p. S19-S27 |
artikel |
2 |
A natural language processing challenge for clinical records: Research Domains Criteria (RDoC) for psychiatry
|
Uzuner, Özlem |
|
|
75 |
S |
p. S1-S3 |
artikel |
3 |
Automatic classification of RDoC positive valence severity with a neural network
|
Clark, Cheryl |
|
|
75 |
S |
p. S120-S128 |
artikel |
4 |
Automatic recognition of symptom severity from psychiatric evaluation records
|
Goodwin, Travis R. |
|
|
75 |
S |
p. S71-S84 |
artikel |
5 |
Counting trees in Random Forests: Predicting symptom severity in psychiatric intake reports
|
Scheurwegs, Elyne |
|
|
75 |
S |
p. S112-S119 |
artikel |
6 |
Cover 2: Editorial Board
|
|
|
|
75 |
S |
p. IFC |
artikel |
7 |
Cover 1/Spine
|
|
|
|
75 |
S |
p. OFC |
artikel |
8 |
De-identification of clinical notes via recurrent neural network and conditional random field
|
Liu, Zengjian |
|
|
75 |
S |
p. S34-S42 |
artikel |
9 |
De-identification of medical records using conditional random fields and long short-term memory networks
|
Jiang, Zhipeng |
|
|
75 |
S |
p. S43-S53 |
artikel |
10 |
De-identification of psychiatric intake records: Overview of 2016 CEGS N-GRID shared tasks Track 1
|
Stubbs, Amber |
|
|
75 |
S |
p. S4-S18 |
artikel |
11 |
Exploring associations of clinical and social parameters with violent behaviors among psychiatric patients
|
Dai, Hong-Jie |
|
|
75 |
S |
p. S149-S159 |
artikel |
12 |
fmi-ii: Table of Contents
|
|
|
|
75 |
S |
p. i-ii |
artikel |
13 |
Learning to identify Protected Health Information by integrating knowledge- and data-driven algorithms: A case study on psychiatric evaluation notes
|
Dehghan, Azad |
|
|
75 |
S |
p. S28-S33 |
artikel |
14 |
Ordinal convolutional neural networks for predicting RDoC positive valence psychiatric symptom severity scores
|
Rios, Anthony |
|
|
75 |
S |
p. S85-S93 |
artikel |
15 |
Predicting mental conditions based on “history of present illness” in psychiatric notes with deep neural networks
|
Tran, Tung |
|
|
75 |
S |
p. S138-S148 |
artikel |
16 |
Predictive modeling for classification of positive valence system symptom severity from initial psychiatric evaluation records
|
Posada, Jose D. |
|
|
75 |
S |
p. S94-S104 |
artikel |
17 |
Psychiatric symptom recognition without labeled data using distributional representations of phrases and on-line knowledge
|
Zhang, Yaoyun |
|
|
75 |
S |
p. S129-S137 |
artikel |
18 |
Symptom severity classification with gradient tree boosting
|
Liu, Yang |
|
|
75 |
S |
p. S105-S111 |
artikel |
19 |
Symptom severity prediction from neuropsychiatric clinical records: Overview of 2016 CEGS N-GRID shared tasks Track 2
|
Filannino, Michele |
|
|
75 |
S |
p. S62-S70 |
artikel |
20 |
The UAB Informatics Institute and 2016 CEGS N-GRID de-identification shared task challenge
|
Bui, Duy Duc An |
|
|
75 |
S |
p. S54-S61 |
artikel |