nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
A context-aware approach for progression tracking of medical concepts in electronic medical records
|
Chang, Nai-Wen |
|
|
58 |
S |
p. S150-S157 |
artikel |
2 |
Adapting existing natural language processing resources for cardiovascular risk factors identification in clinical notes
|
Khalifa, Abdulrahman |
|
|
58 |
S |
p. S128-S132 |
artikel |
3 |
Agile text mining for the 2014 i2b2/UTHealth Cardiac risk factors challenge
|
Cormack, James |
|
|
58 |
S |
p. S120-S127 |
artikel |
4 |
A hybrid model for automatic identification of risk factors for heart disease
|
Yang, Hui |
|
|
58 |
S |
p. S171-S182 |
artikel |
5 |
An automatic system to identify heart disease risk factors in clinical texts over time
|
Chen, Qingcai |
|
|
58 |
S |
p. S158-S163 |
artikel |
6 |
Annotating longitudinal clinical narratives for de-identification: The 2014 i2b2/UTHealth corpus
|
Stubbs, Amber |
|
|
58 |
S |
p. S20-S29 |
artikel |
7 |
Annotating risk factors for heart disease in clinical narratives for diabetic patients
|
Stubbs, Amber |
|
|
58 |
S |
p. S78-S91 |
artikel |
8 |
A systematic comparison of feature space effects on disease classifier performance for phenotype identification of five diseases
|
Kotfila, Christopher |
|
|
58 |
S |
p. S92-S102 |
artikel |
9 |
Automated systems for the de-identification of longitudinal clinical narratives: Overview of 2014 i2b2/UTHealth shared task Track 1
|
Stubbs, Amber |
|
|
58 |
S |
p. S11-S19 |
artikel |
10 |
Automatic de-identification of electronic medical records using token-level and character-level conditional random fields
|
Liu, Zengjian |
|
|
58 |
S |
p. S47-S52 |
artikel |
11 |
Automatic detection of protected health information from clinic narratives
|
Yang, Hui |
|
|
58 |
S |
p. S30-S38 |
artikel |
12 |
Combining glass box and black box evaluations in the identification of heart disease risk factors and their temporal relations from clinical records
|
Grouin, Cyril |
|
|
58 |
S |
p. S133-S142 |
artikel |
13 |
Combining knowledge- and data-driven methods for de-identification of clinical narratives
|
Dehghan, Azad |
|
|
58 |
S |
p. S53-S59 |
artikel |
14 |
Comparison of UMLS terminologies to identify risk of heart disease using clinical notes
|
Shivade, Chaitanya |
|
|
58 |
S |
p. S103-S110 |
artikel |
15 |
Coronary artery disease risk assessment from unstructured electronic health records using text mining
|
Jonnagaddala, Jitendra |
|
|
58 |
S |
p. S203-S210 |
artikel |
16 |
Cover 2: Editorial Board
|
|
|
|
58 |
S |
p. IFC |
artikel |
17 |
Cover 1/Spine
|
|
|
|
58 |
S |
p. OFC |
artikel |
18 |
Creation of a new longitudinal corpus of clinical narratives
|
Kumar, Vishesh |
|
|
58 |
S |
p. S6-S10 |
artikel |
19 |
CRFs based de-identification of medical records
|
He, Bin |
|
|
58 |
S |
p. S39-S46 |
artikel |
20 |
Ease of adoption of clinical natural language processing software: An evaluation of five systems
|
Zheng, Kai |
|
|
58 |
S |
p. S189-S196 |
artikel |
21 |
fmi-ii: Table of Contents
|
|
|
|
58 |
S |
p. i-ii |
artikel |
22 |
Hidden Markov model using Dirichlet process for de-identification
|
Chen, Tao |
|
|
58 |
S |
p. S60-S66 |
artikel |
23 |
Identifying risk factors for heart disease over time: Overview of 2014 i2b2/UTHealth shared task Track 2
|
Stubbs, Amber |
|
|
58 |
S |
p. S67-S77 |
artikel |
24 |
Mining heart disease risk factors in clinical text with named entity recognition and distributional semantic models
|
Urbain, Jay |
|
|
58 |
S |
p. S143-S149 |
artikel |
25 |
Practical applications for natural language processing in clinical research: The 2014 i2b2/UTHealth shared tasks
|
Uzuner, Özlem |
|
|
58 |
S |
p. S1-S5 |
artikel |
26 |
Predicting changes in systolic blood pressure using longitudinal patient records
|
Solomon, John Wes |
|
|
58 |
S |
p. S197-S202 |
artikel |
27 |
Risk factor detection for heart disease by applying text analytics in electronic medical records
|
Torii, Manabu |
|
|
58 |
S |
p. S164-S170 |
artikel |
28 |
Textual inference for eligibility criteria resolution in clinical trials
|
Shivade, Chaitanya |
|
|
58 |
S |
p. S211-S218 |
artikel |
29 |
The role of fine-grained annotations in supervised recognition of risk factors for heart disease from EHRs
|
Roberts, Kirk |
|
|
58 |
S |
p. S111-S119 |
artikel |
30 |
Using local lexicalized rules to identify heart disease risk factors in clinical notes
|
Karystianis, George |
|
|
58 |
S |
p. S183-S188 |
artikel |