nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
A deep learning based multi-model approach for predicting drug-like chemical compound’s toxicity
|
Saravanan, Konda Mani |
|
|
226 |
C |
p. 164-175 |
artikel |
2 |
Chromatin image-driven modelling
|
Kadlof, Michał |
|
|
226 |
C |
p. 54-60 |
artikel |
3 |
Current methodologies in studying chromatin and gene expression
|
Bhaumik, Sukesh R. |
|
|
226 |
C |
p. 19-20 |
artikel |
4 |
DEEP-EP: Identification of epigenetic protein by ensemble residual convolutional neural network for drug discovery
|
Ali, Farman |
|
|
226 |
C |
p. 49-53 |
artikel |
5 |
Deep learning methods in biomedical informatics
|
Zhang, Jinli |
|
|
226 |
C |
p. 162-163 |
artikel |
6 |
Deepm6A-MT: A deep learning-based method for identifying RNA N6-methyladenosine sites in multiple tissues
|
Huang, Guohua |
|
|
226 |
C |
p. 1-8 |
artikel |
7 |
DNA shape features improve prediction of CRISPR/Cas9 activity
|
Vora, Dhvani Sandip |
|
|
226 |
C |
p. 120-126 |
artikel |
8 |
DTKGIN: Predicting drug-target interactions based on knowledge graph and intent graph
|
Luo, Yi |
|
|
226 |
C |
p. 21-27 |
artikel |
9 |
Editorial: Artificial intelligence in drug discovery and development
|
Wei, Leyi |
|
|
226 |
C |
p. 133-137 |
artikel |
10 |
Editorial Board
|
|
|
|
226 |
C |
p. ii |
artikel |
11 |
Experimental and computational approaches for membrane protein insertion and topology determination
|
Duart, Gerard |
|
|
226 |
C |
p. 102-119 |
artikel |
12 |
Exploring GPCR conformational dynamics using single-molecule fluorescence
|
Agyemang, Eugene |
|
|
226 |
C |
p. 35-48 |
artikel |
13 |
Image 1 AlpaPICO: Extraction of PICO frames from clinical trial documents using LLMs
|
Ghosh, Madhusudan |
|
|
226 |
C |
p. 78-88 |
artikel |
14 |
Language model based on deep learning network for biomedical named entity recognition
|
Hou, Guan |
|
|
226 |
C |
p. 71-77 |
artikel |
15 |
m6Aexpress-enet: Predicting the regulatory expression m6A sites by an enet-regularization negative binomial regression model
|
Zhang, Teng |
|
|
226 |
C |
p. 61-70 |
artikel |
16 |
MRUNet-3D: A multi-stride residual 3D UNet for lung nodule segmentation
|
Bbosa, Ronald |
|
|
226 |
C |
p. 89-101 |
artikel |
17 |
Multi-omics data integration and drug screening of AML cancer using Generative Adversarial Network
|
Afroz, Sabrin |
|
|
226 |
C |
p. 138-150 |
artikel |
18 |
Non-canonical amino acids and protein dynamics
|
Antony, Edwin |
|
|
226 |
C |
p. 161 |
artikel |
19 |
Pipelined biomedical event extraction rivaling joint learning
|
Wu, Pengchao |
|
|
226 |
C |
p. 9-18 |
artikel |
20 |
Predicting lysine methylation sites using a convolutional neural network
|
Spadaro, Austin |
|
|
226 |
C |
p. 127-132 |
artikel |
21 |
Prediction of cell-type-specific cohesin-mediated chromatin loops based on chromatin state
|
Liu, Li |
|
|
226 |
C |
p. 151-160 |
artikel |
22 |
The bioaccessibility and tolerability of marine-derived sources of magnesium and calcium
|
Dowley, Alison |
|
|
226 |
C |
p. 28-34 |
artikel |