nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
AAPred-CNN: Accurate predictor based on deep convolution neural network for identification of anti-angiogenic peptides
|
Lin, Changhang |
|
|
204 |
C |
p. 442-448 |
artikel |
2 |
Action and function of helicases on RNA G-quadruplexes
|
Caterino, Marco |
|
|
204 |
C |
p. 110-125 |
artikel |
3 |
Adversarial learning for semi-supervised pediatric sleep staging with single-EEG channel
|
Li, Yamei |
|
|
204 |
C |
p. 84-91 |
artikel |
4 |
A federated learning method for real-time emotion state classification from multi-modal streaming
|
Nandi, Arijit |
|
|
204 |
C |
p. 340-347 |
artikel |
5 |
A near-infrared emitted fluorescence probe for the detection of biosulfite in live zebrafish, mouse and real food samples
|
Shang, Zhuye |
|
|
204 |
C |
p. 47-54 |
artikel |
6 |
A 70‑RNA model based on SVR and RFE for predicting the pancreatic cancer clinical prognosis
|
Chen, Xu |
|
|
204 |
C |
p. 278-285 |
artikel |
7 |
A transformer-based multi-features fusion model for prediction of conversion in mild cognitive impairment
|
Zheng, Guowei |
|
|
204 |
C |
p. 241-248 |
artikel |
8 |
Biochemical analysis of DNA synthesis blockage by G-quadruplex structure and bypass facilitated by a G4-resolving helicase
|
Sommers, Joshua A. |
|
|
204 |
C |
p. 207-214 |
artikel |
9 |
Characterized the diversity of ABCB1 subtypes in immunogenomic landscape for predicting the drug response in breast cancer
|
Chi, Meng |
|
|
204 |
C |
p. 223-233 |
artikel |
10 |
Decoding selective auditory attention with EEG using a transformer model
|
Xu, Zihao |
|
|
204 |
C |
p. 410-417 |
artikel |
11 |
DeepFusion: A deep learning based multi-scale feature fusion method for predicting drug-target interactions
|
Song, Tao |
|
|
204 |
C |
p. 269-277 |
artikel |
12 |
Deep learning based object tracking for 3D microstructure reconstruction
|
Ma, Boyuan |
|
|
204 |
C |
p. 172-178 |
artikel |
13 |
Deep6mAPred: A CNN and Bi-LSTM-based deep learning method for predicting DNA N6-methyladenosine sites across plant species
|
Tang, Xingyu |
|
|
204 |
C |
p. 142-150 |
artikel |
14 |
Deep transformers and convolutional neural network in identifying DNA N6-methyladenine sites in cross-species genomes
|
Le, Nguyen Quoc Khanh |
|
|
204 |
C |
p. 199-206 |
artikel |
15 |
Detection of pediatric obstructive sleep apnea using a multilayer perceptron model based on single-channel oxygen saturation or clinical features
|
Wu, Yunxiao |
|
|
204 |
C |
p. 361-367 |
artikel |
16 |
Determination of rate constants for conformational changes of RNA helicases by single-molecule FRET TIRF microscopy
|
Chakraborty, Anirban |
|
|
204 |
C |
p. 428-441 |
artikel |
17 |
Determining translocation orientations of nucleic acid helicases
|
Perera, Himasha M. |
|
|
204 |
C |
p. 160-171 |
artikel |
18 |
dPromoter-XGBoost: Detecting promoters and strength by combining multiple descriptors and feature selection using XGBoost
|
Li, Hongfei |
|
|
204 |
C |
p. 215-222 |
artikel |
19 |
Editorial Board
|
|
|
|
204 |
C |
p. ii |
artikel |
20 |
Exploration of cortical inhibition and habituation in insomnia: Based on CNV and EEG
|
Zhang, Xiao |
|
|
204 |
C |
p. 73-83 |
artikel |
21 |
External validation of a shortened screening tool using individual participant data meta-analysis: A case study of the Patient Health Questionnaire-Dep-4
|
Harel, Daphna |
|
|
204 |
C |
p. 300-311 |
artikel |
22 |
GC6mA-Pred: A deep learning approach to identify DNA N6-methyladenine sites in the rice genome
|
Cai, Jianhua |
|
|
204 |
C |
p. 14-21 |
artikel |
23 |
Genetic and biochemical interactions of yeast DNA helicases
|
Nickens, David G. |
|
|
204 |
C |
p. 234-240 |
artikel |
24 |
Genome-wide investigations on regulatory functions of RECQ1 helicase
|
Debnath, Subrata |
|
|
204 |
C |
p. 263-268 |
artikel |
25 |
HPE-GCN: Predicting efficacy of tonic formulae via graph convolutional networks integrating traditionally defined herbal properties
|
Liu, Jiajun |
|
|
204 |
C |
p. 101-109 |
artikel |
26 |
Insight into the biochemical mechanism of DNA helicases provided by bulk-phase and single-molecule assays
|
Bianco, Piero R. |
|
|
204 |
C |
p. 348-360 |
artikel |
27 |
Intervening on psychopathology networks: Evaluating intervention targets through simulations
|
Lunansky, Gabriela |
|
|
204 |
C |
p. 29-37 |
artikel |
28 |
Kinetics measurements of G-quadruplex binding and unfolding by helicases
|
Chang-Gu, Bruce |
|
|
204 |
C |
p. 1-13 |
artikel |
29 |
Latent variable mixture models to address heterogeneity in patient-reported outcome data
|
Lix, Lisa M. |
|
|
204 |
C |
p. 151-159 |
artikel |
30 |
Linear linking for related traits (LLRT): A novel method for the harmonization of cognitive domains with no or few common items
|
Nichols, Emma L. |
|
|
204 |
C |
p. 179-188 |
artikel |
31 |
Mapping of sister chromatid exchange events and genome alterations in single cells
|
Hamadeh, Zeid |
|
|
204 |
C |
p. 64-72 |
artikel |
32 |
MDL-CPI: Multi-view deep learning model for compound-protein interaction prediction
|
Wei, Lesong |
|
|
204 |
C |
p. 418-427 |
artikel |
33 |
Measuring the impact of cofactors on RNA helicase activities
|
Venus, Sarah |
|
|
204 |
C |
p. 376-385 |
artikel |
34 |
Model-based assessment of cardiopulmonary autonomic regulation in paced deep breathing
|
Cui, Jiajia |
|
|
204 |
C |
p. 312-318 |
artikel |
35 |
Modeling repeated self-reported outcome data: A continuous-time longitudinal Item Response Theory model
|
Proust-Lima, Cécile |
|
|
204 |
C |
p. 386-395 |
artikel |
36 |
Mouse4mC-BGRU: Deep learning for predicting DNA N4-methylcytosine sites in mouse genome
|
Jin, Junru |
|
|
204 |
C |
p. 258-262 |
artikel |
37 |
MSFF-CDCGAN: A novel method to predict RNA secondary structure based on Generative Adversarial Network
|
Yuan, Shuai |
|
|
204 |
C |
p. 368-375 |
artikel |
38 |
Multi-level analysis of intrinsically disordered protein docking methods
|
Verburgt, Jacob |
|
|
204 |
C |
p. 55-63 |
artikel |
39 |
Near-infrared fluorescent probe based on rhodamine derivative for detection of NADH in live cells
|
Zhang, Yibin |
|
|
204 |
C |
p. 22-28 |
artikel |
40 |
Performance of a Rasch-based method for group comparisons of longitudinal change and response shift at the item level in PRO data: A simulation study
|
Blanchin, Myriam |
|
|
204 |
C |
p. 327-339 |
artikel |
41 |
Plant6mA: A predictor for predicting N6-methyladenine sites with lightweight structure in plant genomes
|
Shi, Hua |
|
|
204 |
C |
p. 126-131 |
artikel |
42 |
Promoter prediction in nannochloropsis based on densely connected convolutional neural networks
|
Wei, Pi-Jing |
|
|
204 |
C |
p. 38-46 |
artikel |
43 |
Resources for computational prediction of intrinsic disorder in proteins
|
Kurgan, Lukasz |
|
|
204 |
C |
p. 132-141 |
artikel |
44 |
Single molecule methods for studying CRISPR Cas9-induced DNA unwinding
|
Okafor, Ikenna C. |
|
|
204 |
C |
p. 319-326 |
artikel |
45 |
StackDPPIV: A novel computational approach for accurate prediction of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides
|
Charoenkwan, Phasit |
|
|
204 |
C |
p. 189-198 |
artikel |
46 |
Structure-function analysis of DEAD-box helicase DDX43
|
Singh, Ravi Shankar |
|
|
204 |
C |
p. 286-299 |
artikel |
47 |
Study on adherence to positive airway pressure treatment for patients with obstructive sleep apnea using real-world big data in a telemedicine management system
|
Yi, Huijie |
|
|
204 |
C |
p. 92-100 |
artikel |
48 |
Toward a rigorous assessment of the statistical performances of methods to estimate the Minimal Important Difference of Patient-Reported Outcomes: A protocol for a large-scale simulation study
|
Vanier, Antoine |
|
|
204 |
C |
p. 396-409 |
artikel |
49 |
Using DMS-MaPseq to uncover the roles of DEAD-box proteins in ribosome assembly
|
Liu, Xin |
|
|
204 |
C |
p. 249-257 |
artikel |