nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
A network-based computational framework to predict and differentiate functions for gene isoforms using exon-level expression data
|
Wang, Dingjie |
|
|
189 |
C |
p. 54-64 |
artikel |
2 |
Assessing relationships between chromatin interactions and regulatory genomic activities using the self-organizing map
|
Kunz, Timothy |
|
|
189 |
C |
p. 12-21 |
artikel |
3 |
CHEER: HierarCHical taxonomic classification for viral mEtagEnomic data via deep leaRning
|
Shang, Jiayu |
|
|
189 |
C |
p. 95-103 |
artikel |
4 |
Decoding regulatory structures and features from epigenomics profiles: A Roadmap-ENCODE Variational Auto-Encoder (RE-VAE) model
|
Hu, Ruifeng |
|
|
189 |
C |
p. 44-53 |
artikel |
5 |
Detect differentially methylated regions using non-homogeneous hidden Markov model for bisulfite sequencing data
|
Chen, Yingyu |
|
|
189 |
C |
p. 34-43 |
artikel |
6 |
Discover novel disease-associated genes based on regulatory networks of long-range chromatin interactions
|
Wang, Hao |
|
|
189 |
C |
p. 22-33 |
artikel |
7 |
Editorial Board
|
|
|
|
189 |
C |
p. ii |
artikel |
8 |
Ensemble learning models that predict surface protein abundance from single-cell multimodal omics data
|
Xu, Fan |
|
|
189 |
C |
p. 65-73 |
artikel |
9 |
FreeHi-C spike-in simulations for benchmarking differential chromatin interaction detection
|
Zheng, Ye |
|
|
189 |
C |
p. 3-11 |
artikel |
10 |
Hyper-graph based sparse canonical correlation analysis for the diagnosis of Alzheimer’s disease from multi-dimensional genomic data
|
Shao, Wei |
|
|
189 |
C |
p. 86-94 |
artikel |
11 |
Integrating multi-omics data by learning modality invariant representations for improved prediction of overall survival of cancer
|
Tong, Li |
|
|
189 |
C |
p. 74-85 |
artikel |
12 |
Machine learning for the analysis of multi-omics data
|
Sun, Yanni |
|
|
189 |
C |
p. 1-2 |
artikel |