nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
Affinity network fusion and semi-supervised learning for cancer patient clustering
|
Ma, Tianle |
|
2018 |
145 |
C |
p. 16-24 |
artikel |
2 |
An integrative approach to investigate the association among high-sensitive C-reactive protein, body fat mass distribution, and other cardiometabolic risk factors in young healthy women
|
Wu, Bin |
|
2018 |
145 |
C |
p. 60-66 |
artikel |
3 |
Data mining methods for analyzing biological data in terms of phenotypes
|
Kim, Sun |
|
2018 |
145 |
C |
p. 1 |
artikel |
4 |
DeepText2GO: Improving large-scale protein function prediction with deep semantic text representation
|
You, Ronghui |
|
2018 |
145 |
C |
p. 82-90 |
artikel |
5 |
Editorial Board
|
|
|
2018 |
145 |
C |
p. ii |
artikel |
6 |
In silico experiment system for testing hypothesis on gene functions using three condition specific biological networks
|
Lee, Chai-Jin |
|
2018 |
145 |
C |
p. 10-15 |
artikel |
7 |
Leveraging multiple gene networks to prioritize GWAS candidate genes via network representation learning
|
Wu, Mengmeng |
|
2018 |
145 |
C |
p. 41-50 |
artikel |
8 |
Multiplex confounding factor correction for genomic association mapping with squared sparse linear mixed model
|
Wang, Haohan |
|
2018 |
145 |
C |
p. 33-40 |
artikel |
9 |
POST: A framework for set-based association analysis in high-dimensional data
|
Cao, Xueyuan |
|
2018 |
145 |
C |
p. 76-81 |
artikel |
10 |
Predicting drug-disease associations and their therapeutic function based on the drug-disease association bipartite network
|
Zhang, Wen |
|
2018 |
145 |
C |
p. 51-59 |
artikel |
11 |
SigEMD: A powerful method for differential gene expression analysis in single-cell RNA sequencing data
|
Wang, Tianyu |
|
2018 |
145 |
C |
p. 25-32 |
artikel |
12 |
Statistical selection of biological models for genome-wide association analyses
|
Bi, Wenjian |
|
2018 |
145 |
C |
p. 67-75 |
artikel |
13 |
Variable selection in heterogeneous datasets: A truncated-rank sparse linear mixed model with applications to genome-wide association studies
|
Wang, Haohan |
|
2018 |
145 |
C |
p. 2-9 |
artikel |