nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
An integrated approach to infer dynamic protein-gene interactions – A case study of the human P53 protein
|
Wang, Junbai |
|
2016 |
110 |
C |
p. 3-13 |
artikel |
2 |
Boosting compound-protein interaction prediction by deep learning
|
Tian, Kai |
|
2016 |
110 |
C |
p. 64-72 |
artikel |
3 |
Conservation of hot regions in protein–protein interaction in evolution
|
Hu, Jing |
|
2016 |
110 |
C |
p. 73-80 |
artikel |
4 |
Cover 1
|
|
|
2016 |
110 |
C |
p. OFC |
artikel |
5 |
Editorial
|
Liao, Li |
|
2016 |
110 |
C |
p. 1-2 |
artikel |
6 |
Editorial Board
|
|
|
2016 |
110 |
C |
p. IFC |
artikel |
7 |
Essential protein discovery based on a combination of modularity and conservatism
|
Zhao, Bihai |
|
2016 |
110 |
C |
p. 54-63 |
artikel |
8 |
Identifying protein complexes based on brainstorming strategy
|
Shen, Xianjun |
|
2016 |
110 |
C |
p. 44-53 |
artikel |
9 |
Improving drug safety: From adverse drug reaction knowledge discovery to clinical implementation
|
Tan, Yuxiang |
|
2016 |
110 |
C |
p. 14-25 |
artikel |
10 |
Improving hot region prediction by parameter optimization of density clustering in PPI
|
Hu, Jing |
|
2016 |
110 |
C |
p. 35-43 |
artikel |
11 |
Neighbor affinity based algorithm for discovering temporal protein complex from dynamic PPI network
|
Shen, Xianjun |
|
2016 |
110 |
C |
p. 90-96 |
artikel |
12 |
Prediction of Protein–Protein Interaction via co-occurring Aligned Pattern Clusters
|
Sze-To, Antonio |
|
2016 |
110 |
C |
p. 26-34 |
artikel |
13 |
Prediction of residue-residue contact matrix for protein-protein interaction with Fisher score features and deep learning
|
Du, Tianchuan |
|
2016 |
110 |
C |
p. 97-105 |
artikel |
14 |
Protein interaction network (PIN)-based breast cancer subsystem identification and activation measurement for prognostic modeling
|
Lim, S. |
|
2016 |
110 |
C |
p. 81-89 |
artikel |