nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
A fusion spatial attention approach for few-shot learning
|
Song, Heda |
|
|
81 |
C |
p. 187-202 |
artikel |
2 |
A multi-representation re-ranking model for Personalized Product Search
|
Bassani, Elias |
|
|
81 |
C |
p. 240-249 |
artikel |
3 |
A novel model usability evaluation framework (MUsE) for explainable artificial intelligence
|
Dieber, Jürgen |
|
|
81 |
C |
p. 143-153 |
artikel |
4 |
CLEVR-XAI: A benchmark dataset for the ground truth evaluation of neural network explanations
|
Arras, Leila |
|
|
81 |
C |
p. 14-40 |
artikel |
5 |
ContrXT: Generating contrastive explanations from any text classifier
|
Malandri, Lorenzo |
|
|
81 |
C |
p. 103-115 |
artikel |
6 |
Counterfactuals and causability in explainable artificial intelligence: Theory, algorithms, and applications
|
Chou, Yu-Liang |
|
|
81 |
C |
p. 59-83 |
artikel |
7 |
Deriving the personalized individual semantics of linguistic information from flexible linguistic preference relations
|
Jiang, Le |
|
|
81 |
C |
p. 154-170 |
artikel |
8 |
Editorial Board
|
|
|
|
81 |
C |
p. ii-iii |
artikel |
9 |
Explaining the impact of source behaviour in evidential reasoning
|
Kowalski, Paweł |
|
|
81 |
C |
p. 41-58 |
artikel |
10 |
Identifying user geolocation with Hierarchical Graph Neural Networks and explainable fusion
|
Zhou, Fan |
|
|
81 |
C |
p. 1-13 |
artikel |
11 |
Information fusion for edge intelligence: A survey
|
Zhang, Yin |
|
|
81 |
C |
p. 171-186 |
artikel |
12 |
Intrinsic Cramér–Rao bounds for distributed Bayesian estimator
|
Tnunay, Hilton |
|
|
81 |
C |
p. 129-142 |
artikel |
13 |
Knowledge graph-based rich and confidentiality preserving Explainable Artificial Intelligence (XAI)
|
Rožanec, Jože M. |
|
|
81 |
C |
p. 91-102 |
artikel |
14 |
Multimodal Co-learning: Challenges, applications with datasets, recent advances and future directions
|
Rahate, Anil |
|
|
81 |
C |
p. 203-239 |
artikel |
15 |
Neural generators of sparse local linear models for achieving both accuracy and interpretability
|
Yoshikawa, Yuya |
|
|
81 |
C |
p. 116-128 |
artikel |
16 |
Tabular data: Deep learning is not all you need
|
Shwartz-Ziv, Ravid |
|
|
81 |
C |
p. 84-90 |
artikel |