nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
AAR-RT – A system for auto-contouring organs at risk on CT images for radiation therapy planning: Principles, design, and large-scale evaluation on head-and-neck and thoracic cancer cases
|
Wu, Xingyu |
|
2019 |
54 |
C |
p. 45-62 |
artikel |
2 |
A modality-adaptive method for segmenting brain tumors and organs-at-risk in radiation therapy planning
|
Agn, Mikael |
|
2019 |
54 |
C |
p. 220-237 |
artikel |
3 |
An image interpolation approach for acquisition time reduction in navigator-based 4D MRI
|
Karani, Neerav |
|
2019 |
54 |
C |
p. 20-29 |
artikel |
4 |
BIRNet: Brain image registration using dual-supervised fully convolutional networks
|
Fan, Jingfan |
|
2019 |
54 |
C |
p. 193-206 |
artikel |
5 |
Breast MRI and X-ray mammography registration using gradient values
|
García, Eloy |
|
2019 |
54 |
C |
p. 76-87 |
artikel |
6 |
Constrained-CNN losses for weakly supervised segmentation
|
Kervadec, Hoel |
|
2019 |
54 |
C |
p. 88-99 |
artikel |
7 |
CT male pelvic organ segmentation using fully convolutional networks with boundary sensitive representation
|
Wang, Shuai |
|
2019 |
54 |
C |
p. 168-178 |
artikel |
8 |
Deep Evolutionary Networks with Expedited Genetic Algorithms for Medical Image Denoising
|
Liu, Peng |
|
2019 |
54 |
C |
p. 306-315 |
artikel |
9 |
Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network
|
Lu, Donghuan |
|
2019 |
54 |
C |
p. 100-110 |
artikel |
10 |
DeepPET: A deep encoder–decoder network for directly solving the PET image reconstruction inverse problem
|
Häggström, Ida |
|
2019 |
54 |
C |
p. 253-262 |
artikel |
11 |
Discovering hierarchical common brain networks via multimodal deep belief network
|
Zhang, Shu |
|
2019 |
54 |
C |
p. 238-252 |
artikel |
12 |
Editorial Board
|
|
|
2019 |
54 |
C |
p. ii |
artikel |
13 |
Exploiting structural redundancy in q-space for improved EAP reconstruction from highly undersampled (k, q)-space in DMRI
|
Sun, Jiaqi |
|
2019 |
54 |
C |
p. 122-137 |
artikel |
14 |
f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks
|
Schlegl, Thomas |
|
2019 |
54 |
C |
p. 30-44 |
artikel |
15 |
Fully automatic 3D reconstruction of the placenta and its peripheral vasculature in intrauterine fetal MRI
|
Torrents-Barrena, Jordina |
|
2019 |
54 |
C |
p. 263-279 |
artikel |
16 |
Graph Convolutions on Spectral Embeddings for Cortical Surface Parcellation
|
Gopinath, Karthik |
|
2019 |
54 |
C |
p. 297-305 |
artikel |
17 |
Integrating spatial configuration into heatmap regression based CNNs for landmark localization
|
Payer, Christian |
|
2019 |
54 |
C |
p. 207-219 |
artikel |
18 |
Medical image classification using synergic deep learning
|
Zhang, Jianpeng |
|
2019 |
54 |
C |
p. 10-19 |
artikel |
19 |
Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis
|
Cheplygina, Veronika |
|
2019 |
54 |
C |
p. 280-296 |
artikel |
20 |
OBELISK-Net: Fewer layers to solve 3D multi-organ segmentation with sparse deformable convolutions
|
Heinrich, Mattias P. |
|
2019 |
54 |
C |
p. 1-9 |
artikel |
21 |
Optimal surface segmentation with convex priors in irregularly sampled space
|
Shah, Abhay |
|
2019 |
54 |
C |
p. 63-75 |
artikel |
22 |
Patient-attentive sequential strategy for perimetry-based visual field acquisition
|
Kucur, Şerife Seda |
|
2019 |
54 |
C |
p. 179-192 |
artikel |
23 |
Population shrinkage of covariance (PoSCE) for better individual brain functional-connectivity estimation
|
Rahim, Mehdi |
|
2019 |
54 |
C |
p. 138-148 |
artikel |
24 |
Predicting breast tumor proliferation from whole-slide images: The TUPAC16 challenge
|
Veta, Mitko |
|
2019 |
54 |
C |
p. 111-121 |
artikel |
25 |
Ultrasound guidance in minimally invasive robotic procedures
|
Antico, Maria |
|
2019 |
54 |
C |
p. 149-167 |
artikel |