nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
Adaptive online extreme learning machine by regulating forgetting factor by concept drift map
|
Yu, Hualong |
|
2019 |
343 |
C |
p. 141-153 |
artikel |
2 |
A dynamic linear model for heteroscedastic LDA under class imbalance
|
Gyamfi, Kojo Sarfo |
|
2019 |
343 |
C |
p. 65-75 |
artikel |
3 |
An empirical study to investigate oversampling methods for improving software defect prediction using imbalanced data
|
Malhotra, Ruchika |
|
2019 |
343 |
C |
p. 120-140 |
artikel |
4 |
Boosting the performance of over-sampling algorithms through under-sampling the minority class
|
de Morais, Romero F.A.B. |
|
2019 |
343 |
C |
p. 3-18 |
artikel |
5 |
Cost-sensitive support vector machines
|
Iranmehr, Arya |
|
2019 |
343 |
C |
p. 50-64 |
artikel |
6 |
Covariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related EEG-based brain-computer interface
|
Raza, Haider |
|
2019 |
343 |
C |
p. 154-166 |
artikel |
7 |
Editorial Board
|
|
|
2019 |
343 |
C |
p. ii-iii |
artikel |
8 |
Exploratory study on Class Imbalance and solutions for Network Traffic Classification
|
Gómez, Santiago Egea |
|
2019 |
343 |
C |
p. 100-119 |
artikel |
9 |
Learning in the presence of class imbalance and concept drift
|
Wang, Shuo |
|
2019 |
343 |
C |
p. 1-2 |
artikel |
10 |
Pre-processing approaches for imbalanced distributions in regression
|
Branco, Paula |
|
2019 |
343 |
C |
p. 76-99 |
artikel |
11 |
Radial-Based oversampling for noisy imbalanced data classification
|
Koziarski, Michał |
|
2019 |
343 |
C |
p. 19-33 |
artikel |
12 |
Twin Neural Networks for the classification of large unbalanced datasets
|
Jayadeva, |
|
2019 |
343 |
C |
p. 34-49 |
artikel |