nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
A graph-theoretic approach to 3D shape classification
|
Ben Hamza, A. |
|
2016 |
211 |
C |
p. 11-21 11 p. |
artikel |
2 |
An improved SVM classifier based on double chains quantum genetic algorithm and its application in analogue circuit diagnosis
|
Chen, Peng |
|
2016 |
211 |
C |
p. 202-211 10 p. |
artikel |
3 |
A primal–dual method for SVM training
|
Djemai, Samia |
|
2016 |
211 |
C |
p. 34-40 7 p. |
artikel |
4 |
A sparse method for least squares twin support vector regression
|
Huang, Huajuan |
|
2016 |
211 |
C |
p. 150-158 9 p. |
artikel |
5 |
A vehicle classification system based on hierarchical multi-SVMs in crowded traffic scenes
|
Fu, Huiyuan |
|
2016 |
211 |
C |
p. 182-190 9 p. |
artikel |
6 |
Building support vector machines in the context of regularized least squares
|
Peng, Jian-Xun |
|
2016 |
211 |
C |
p. 129-142 14 p. |
artikel |
7 |
Computational performance optimization of support vector machine based on support vectors
|
Wang, Xuesong |
|
2016 |
211 |
C |
p. 66-71 6 p. |
artikel |
8 |
Curvelet Support Value Filters (CSVFs) for image super-resolution
|
Yang, Shuyuan |
|
2016 |
211 |
C |
p. 53-59 7 p. |
artikel |
9 |
Editorial Board
|
|
|
2016 |
211 |
C |
p. IFC- 1 p. |
artikel |
10 |
Modified twin support vector regression
|
Parastalooi, Nafiseh |
|
2016 |
211 |
C |
p. 84-97 14 p. |
artikel |
11 |
Novel Bayesian inference on optimal parameters of support vector machines and its application to industrial survey data classification
|
Zhong, Jingjing |
|
2016 |
211 |
C |
p. 159-171 13 p. |
artikel |
12 |
Novel Grouping Method-based support vector machine plus for structured data
|
Hou, Qiuling |
|
2016 |
211 |
C |
p. 191-201 11 p. |
artikel |
13 |
Photovoltaic forecast based on hybrid PCA–LSSVM using dimensionality reducted data
|
Malvoni, M. |
|
2016 |
211 |
C |
p. 72-83 12 p. |
artikel |
14 |
Proactive service selection based on acquaintance model and LS-SVM
|
Jingjing, Hu |
|
2016 |
211 |
C |
p. 60-65 6 p. |
artikel |
15 |
Probability model selection and parameter evolutionary estimation for clustering imbalanced data without sampling
|
Fan, Jiancong |
|
2016 |
211 |
C |
p. 172-181 10 p. |
artikel |
16 |
Real-time online learning of Gaussian mixture model for opacity mapping
|
Zhou, Guo |
|
2016 |
211 |
C |
p. 212-220 9 p. |
artikel |
17 |
Recent advances in Support Vector Machines
|
Ding, Shifei |
|
2016 |
211 |
C |
p. 1-3 3 p. |
artikel |
18 |
Robust face detection using local CNN and SVM based on kernel combination
|
Tao, Qin-Qin |
|
2016 |
211 |
C |
p. 98-105 8 p. |
artikel |
19 |
Self-adaptive step fruit fly algorithm optimized support vector regression model for dynamic response prediction of magnetorheological elastomer base isolator
|
Yu, Yang |
|
2016 |
211 |
C |
p. 41-52 12 p. |
artikel |
20 |
Support vector machine based on hierarchical and dynamical granulation
|
Guo, Husheng |
|
2016 |
211 |
C |
p. 22-33 12 p. |
artikel |
21 |
Torque modeling of Switched Reluctance Motor using LSSVM-DE
|
Evangeline S, Jebarani |
|
2016 |
211 |
C |
p. 117-128 12 p. |
artikel |
22 |
Toward reliable model for prediction Drilling Fluid Density at wellbore conditions: A LSSVM model
|
Ahmadi, Mohammad Ali |
|
2016 |
211 |
C |
p. 143-149 7 p. |
artikel |
23 |
Using unsupervised clustering approach to train the Support Vector Machine for text classification
|
Shafiabady, Niusha |
|
2016 |
211 |
C |
p. 4-10 7 p. |
artikel |
24 |
Weighted multicategory nonparallel planes SVM classifiers
|
Kumar, Deepak |
|
2016 |
211 |
C |
p. 106-116 11 p. |
artikel |