nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
2001 |
The in vivo fate and targeting engineering of crossover vesicle-based gene delivery system
|
Jiang, Xin-Chi |
|
|
82-83 |
C |
p. |
artikel |
2002 |
The in vivo fate of polymeric micelles
|
Cai, Yifan |
|
|
82-83 |
C |
p. |
artikel |
2003 |
The Lutonix® drug-coated balloon: A novel drug delivery technology for the treatment of vascular disease
|
Schorn, Ian |
|
2017 |
82-83 |
C |
p. 78-87 10 p. |
artikel |
2004 |
Themed issue: Extracellular vesicles in drug delivery and bioengineering
|
Fuhrmann, Gregor |
|
|
82-83 |
C |
p. |
artikel |
2005 |
Theme issue: In vitro mucus models
|
Kramer, Jessica R. |
|
|
82-83 |
C |
p. |
artikel |
2006 |
The mesmiRizing complexity of microRNAs for striated muscle tissue engineering
|
Quattrocelli, Mattia |
|
2015 |
82-83 |
C |
p. 37-52 16 p. |
artikel |
2007 |
The molecular circadian clock: From fundamental mechanisms to therapeutic promise in neurological disorders
|
Campbell-Galland, Adam |
|
|
82-83 |
C |
p. |
artikel |
2008 |
The need for complex 3D culture models to unravel novel pathways and identify accurate biomarkers in breast cancer
|
Weigelt, Britta |
|
2014 |
82-83 |
C |
p. 42-51 10 p. |
artikel |
2009 |
The neonatal Fc receptor, FcRn, as a target for drug delivery and therapy
|
Sockolosky, Jonathan T. |
|
2015 |
82-83 |
C |
p. 109-124 16 p. |
artikel |
2010 |
The past, present and future in scaffold-based tendon treatments
|
Lomas, A.J. |
|
2015 |
82-83 |
C |
p. 257-277 21 p. |
artikel |
2011 |
The past, present, and future of breast cancer models for nanomedicine development
|
Boix-Montesinos, Paz |
|
|
82-83 |
C |
p. 306-330 |
artikel |
2012 |
The potential for remodelling the tumour vasculature in glioblastoma
|
Brighi, Caterina |
|
2018 |
82-83 |
C |
p. 49-61 |
artikel |
2013 |
The potential role of nano- and micro-technology in the management of critical illnesses
|
Sadikot, Ruxana T. |
|
2014 |
82-83 |
C |
p. 27-31 5 p. |
artikel |
2014 |
The potential to treat lung cancer via inhalation of repurposed drugs
|
Lee, Wing-Hin |
|
2018 |
82-83 |
C |
p. 107-130 |
artikel |
2015 |
The promising interplay between sonodynamic therapy and nanomedicine
|
Canaparo, Roberto |
|
|
82-83 |
C |
p. |
artikel |
2016 |
The quest for mechanically and biologically functional soft biomaterials via soft network composites
|
Bas, Onur |
|
2018 |
82-83 |
C |
p. 214-234 |
artikel |
2017 |
Theranostics applications of quantum dots in regenerative medicine, cancer medicine, and infectious diseases
|
Yukawa, Hiroshi |
|
|
82-83 |
C |
p. |
artikel |
2018 |
Therapeutic and delivery strategies of phytoconstituents for renal fibrosis
|
Xu, Huan |
|
|
82-83 |
C |
p. |
artikel |
2019 |
Therapeutic and diagnostic targeting of fibrosis in metabolic, proliferative and viral disorders
|
Sofias, Alexandros Marios |
|
|
82-83 |
C |
p. |
artikel |
2020 |
Therapeutic approaches targeting molecular signaling pathways common to diabetes, lung diseases and cancer
|
Raguraman, Rajeswari |
|
|
82-83 |
C |
p. |
artikel |
2021 |
Therapeutic aptamers in discovery, preclinical and clinical stages
|
Ismail, Said I. |
|
2018 |
82-83 |
C |
p. 51-64 |
artikel |
2022 |
Therapeutic cell encapsulation techniques and applications in diabetes
|
Steele, J.A.M. |
|
2014 |
82-83 |
C |
p. 74-83 10 p. |
artikel |
2023 |
Therapeutic delivery systems for rheumatoid arthritis based on hydrogel carriers
|
Chapa-Villarreal, Fabiola A. |
|
|
82-83 |
C |
p. |
artikel |
2024 |
Therapeutic gene regulation using pyrrole–imidazole polyamides
|
Yu, Zutao |
|
|
82-83 |
C |
p. 66-85 |
artikel |
2025 |
Therapeutic genome editing in cardiovascular diseases
|
Nishiga, Masataka |
|
|
82-83 |
C |
p. 147-157 |
artikel |
2026 |
Therapeutic medications against diabetes: What we have and what we expect
|
Hu, Cheng |
|
2019 |
82-83 |
C |
p. 3-15 |
artikel |
2027 |
Therapeutic microRNAs targeting the NF-kappa B signaling circuits of cancers
|
Tong, Lingying |
|
2015 |
82-83 |
C |
p. 1-15 15 p. |
artikel |
2028 |
Therapeutic nanotechnologies for Alzheimer’s disease: A critical analysis of recent trends and findings
|
Delbreil, Philippe |
|
|
82-83 |
C |
p. |
artikel |
2029 |
Therapeutic potential of polypeptide-based conjugates: Rational design and analytical tools that can boost clinical translation
|
Melnyk, Tetiana |
|
|
82-83 |
C |
p. 136-169 |
artikel |
2030 |
Therapeutic potential of pro-resolving mediators in diabetic kidney disease
|
Vartak, Tanwi |
|
|
82-83 |
C |
p. |
artikel |
2031 |
Therapeutic pro-fibrogenic signaling pathways in fibroblasts
|
Cannito, Stefania |
|
2017 |
82-83 |
C |
p. 57-84 |
artikel |
2032 |
Therapeutic strategies for enhancing angiogenesis in wound healing
|
Veith, Austin P. |
|
2019 |
82-83 |
C |
p. 97-125 |
artikel |
2033 |
Therapeutic strategies to combat antibiotic resistance
|
Brooks, Benjamin D. |
|
2014 |
82-83 |
C |
p. 14-27 14 p. |
artikel |
2034 |
Therapeutic targeting of the oncogenic Wnt signaling pathway for treating colorectal cancer and other colonic disorders
|
Caspi, Michal |
|
|
82-83 |
C |
p. 118-136 |
artikel |
2035 |
Therapeutic targets, novel drugs, and delivery systems for diabetes associated NAFLD and liver fibrosis
|
Kumar, Virender |
|
|
82-83 |
C |
p. |
artikel |
2036 |
Thermally-triggered fabrication of cell sheets for tissue engineering and regenerative medicine
|
Takahashi, Hironobu |
|
2019 |
82-83 |
C |
p. 276-292 |
artikel |
2037 |
Thermoresponsive polymer nanocarriers for biomedical applications
|
Bordat, Alexandre |
|
2019 |
82-83 |
C |
p. 167-192 |
artikel |
2038 |
The RNA-binding protein HuR in human cancer: A friend or foe?
|
Wu, Xiaoqing |
|
|
82-83 |
C |
p. |
artikel |
2039 |
The role of CCL2/CCR2 axis in cancer and inflammation: The next frontier in nanomedicine
|
Pozzi, Sabina |
|
|
82-83 |
C |
p. |
artikel |
2040 |
The role of coagulome in the tumor immune microenvironment
|
Wahab, Riajul |
|
|
82-83 |
C |
p. |
artikel |
2041 |
The role of imaging in targeted delivery of nanomedicine for cancer therapy
|
Li, Puze |
|
|
82-83 |
C |
p. |
artikel |
2042 |
The role of lipid components in lipid nanoparticles for vaccines and gene therapy
|
Hald Albertsen, Camilla |
|
|
82-83 |
C |
p. |
artikel |
2043 |
The role of microneedle arrays in drug delivery and patient monitoring to prevent diabetes induced fibrosis
|
McAlister, Emma |
|
|
82-83 |
C |
p. |
artikel |
2044 |
The role of mucosal barriers in disease progression and transmission
|
Bustos, Nicole A. |
|
|
82-83 |
C |
p. |
artikel |
2045 |
The role of mucus as an invisible cloak to transepithelial drug delivery by nanoparticles
|
García-Díaz, María |
|
2018 |
82-83 |
C |
p. 107-124 |
artikel |
2046 |
The role of mucus in cell-based models used to screen mucosal drug delivery
|
Lechanteur, Anna |
|
2018 |
82-83 |
C |
p. 50-63 |
artikel |
2047 |
The role of mucus on drug transport and its potential to affect therapeutic outcomes
|
Murgia, Xabier |
|
2018 |
82-83 |
C |
p. 82-97 |
artikel |
2048 |
The role of RNA binding proteins in hepatocellular carcinoma
|
Zhang, Kai |
|
|
82-83 |
C |
p. |
artikel |
2049 |
The role of sex as a biological variable in the efficacy and toxicity of therapeutic nanomedicine
|
Sharifi, Shahriar |
|
|
82-83 |
C |
p. 337-347 |
artikel |
2050 |
The role of the cell surface glycocalyx in drug delivery to and through the endothelium
|
Fu, Lu |
|
|
82-83 |
C |
p. |
artikel |
2051 |
The role of the HBCU pipeline in diversifying the STEM workforce: Training the next generation of drug delivery researchers
|
Smith, Kalynda C. |
|
|
82-83 |
C |
p. |
artikel |
2052 |
The significance of artificial intelligence in drug delivery system design
|
Hassanzadeh, Parichehr |
|
|
82-83 |
C |
p. 169-190 |
artikel |
2053 |
The solubility–permeability interplay and oral drug formulation design: Two heads are better than one
|
Dahan, Arik |
|
2016 |
82-83 |
C |
p. 99-107 9 p. |
artikel |
2054 |
The sound of drug delivery: Optoacoustic imaging in pharmacology
|
Liu, Nian |
|
|
82-83 |
C |
p. |
artikel |
2055 |
The spatiotemporal journey of nanomedicines in solid tumors on their therapeutic efficacy
|
Qin, Mengmeng |
|
|
82-83 |
C |
p. |
artikel |
2056 |
The state-of-play and future of antibody therapeutics
|
Elgundi, Zehra |
|
2017 |
82-83 |
C |
p. 2-19 |
artikel |
2057 |
The suprachoroidal space as a route of administration to the posterior segment of the eye
|
Chiang, Bryce |
|
2018 |
82-83 |
C |
p. 58-66 |
artikel |
2058 |
The tendon microenvironment: Engineered in vitro models to study cellular crosstalk
|
Gomez-Florit, Manuel |
|
|
82-83 |
C |
p. |
artikel |
2059 |
The 10th anniversary of MXenes: Challenges and prospects for their surface modification toward future biotechnological applications
|
Szuplewska, Aleksandra |
|
|
82-83 |
C |
p. |
artikel |
2060 |
The tumor EPR effect for cancer drug delivery: Current status, limitations, and alternatives
|
Sun, Rui |
|
|
82-83 |
C |
p. |
artikel |
2061 |
The use of hyperpolarized carbon-13 magnetic resonance for molecular imaging
|
Siddiqui, Sarmad |
|
2017 |
82-83 |
C |
p. 3-23 21 p. |
artikel |
2062 |
The use of skin models in drug development
|
Mathes, Stephanie H. |
|
2014 |
82-83 |
C |
p. 81-102 22 p. |
artikel |
2063 |
The versatile role of HuR in Glioblastoma and its potential as a therapeutic target for a multi-pronged attack
|
Guha, Abhishek |
|
|
82-83 |
C |
p. |
artikel |
2064 |
Thiolated polymers: Bioinspired polymers utilizing one of the most important bridging structures in nature
|
Leichner, Christina |
|
|
82-83 |
C |
p. 191-221 |
artikel |
2065 |
Thou shall not heal: Overcoming the non-healing behaviour of diabetic foot ulcers by engineering the inflammatory microenvironment
|
Monaghan, Michael G. |
|
|
82-83 |
C |
p. |
artikel |
2066 |
Three-dimensional cardiac tissue fabrication based on cell sheet technology
|
Masuda, Shinako |
|
2016 |
82-83 |
C |
p. 103-109 7 p. |
artikel |
2067 |
Three-dimensional cell culture technique and pathophysiology
|
Matsusaki, Michiya |
|
2014 |
82-83 |
C |
p. 95-103 9 p. |
artikel |
2068 |
Three-dimensional modeling of ovarian cancer
|
White, Erin A. |
|
2014 |
82-83 |
C |
p. 184-192 9 p. |
artikel |
2069 |
Three significant highlights of controlled drug delivery over the past 55 years: PEGylation, ADCs, and EPR
|
Hoffman, Allan S. |
|
|
82-83 |
C |
p. 2-3 |
artikel |
2070 |
Tip-enhanced Raman scattering—Targeting structure-specific surface characterization for biomedical samples
|
Sharma, Gaurav |
|
2015 |
82-83 |
C |
p. 42-56 15 p. |
artikel |
2071 |
Tissue engineered buccal mucosa for urethroplasty: Progress and future directions
|
Osman, N.I. |
|
2015 |
82-83 |
C |
p. 69-76 8 p. |
artikel |
2072 |
Tissue-engineered 3D tumor angiogenesis models: Potential technologies for anti-cancer drug discovery
|
Chwalek, Karolina |
|
2014 |
82-83 |
C |
p. 30-39 10 p. |
artikel |
2073 |
Tissue-engineered kidney disease models
|
DesRochers, Teresa M. |
|
2014 |
82-83 |
C |
p. 67-80 14 p. |
artikel |
2074 |
Tissue engineered models of healthy and malignant human bone marrow
|
Chramiec, Alan |
|
2019 |
82-83 |
C |
p. 78-92 |
artikel |
2075 |
Tissue engineering and regenerative medicine: bench to bedside in urology
|
Damaser, Margot S. |
|
2015 |
82-83 |
C |
p. v-vii nvt p. |
artikel |
2076 |
Tissue engineering in urothelium regeneration
|
Vaegler, Martin |
|
2015 |
82-83 |
C |
p. 64-68 5 p. |
artikel |
2077 |
Tissue engineering strategies to study cartilage development, degeneration and regeneration
|
Bhattacharjee, Maumita |
|
2015 |
82-83 |
C |
p. 107-122 16 p. |
artikel |
2078 |
Tissue engineering the cardiac microenvironment: Multicellular microphysiological systems for drug screening
|
Kurokawa, Yosuke K. |
|
2016 |
82-83 |
C |
p. 225-233 9 p. |
artikel |
2079 |
Tools for computational design and high-throughput screening of therapeutic enzymes
|
Vasina, Michal |
|
|
82-83 |
C |
p. |
artikel |
2080 |
Top-down fabrication of shape-controlled, monodisperse nanoparticles for biomedical applications
|
Fu, Xinxin |
|
2018 |
82-83 |
C |
p. 169-187 |
artikel |
2081 |
To PEGylate or not to PEGylate: Immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives
|
Shi, Da |
|
|
82-83 |
C |
p. |
artikel |
2082 |
Topical drug delivery: History, percutaneous absorption, and product development
|
Roberts, Michael S. |
|
|
82-83 |
C |
p. |
artikel |
2083 |
Topical treatments for skin cancer
|
Cullen, Jason K. |
|
|
82-83 |
C |
p. 54-64 |
artikel |
2084 |
Topical treatment strategies to manipulate human skin pigmentation
|
Rachmin, Inbal |
|
|
82-83 |
C |
p. 65-71 |
artikel |
2085 |
Topology dependent modification of layered double hydroxide for therapeutic and diagnostic platform
|
Kim, Tae-Hyun |
|
|
82-83 |
C |
p. |
artikel |
2086 |
Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity
|
Maeda, Hiroshi |
|
2015 |
82-83 |
C |
p. 3-6 4 p. |
artikel |
2087 |
Toward closed-loop drug delivery: Integrating wearable technologies with transdermal drug delivery systems
|
Manikkath, Jyothsna |
|
|
82-83 |
C |
p. |
artikel |
2088 |
Toward rational vaccine engineering
|
Vishweshwaraiah, Yashavantha L. |
|
|
82-83 |
C |
p. |
artikel |
2089 |
Towards artificial intelligence-enabled extracellular vesicle precision drug delivery
|
Greenberg, Zachary F. |
|
|
82-83 |
C |
p. |
artikel |
2090 |
Towards chamber specific heart-on-a-chip for drug testing applications
|
Zhao, Yimu |
|
|
82-83 |
C |
p. 60-76 |
artikel |
2091 |
Towards controlled drug delivery in brain tumors with microbubble-enhanced focused ultrasound
|
Schoen Jr, Scott |
|
|
82-83 |
C |
p. |
artikel |
2092 |
Towards Enhancing Skin Drug Delivery
|
Gu, Zhen |
|
|
82-83 |
C |
p. 1-2 |
artikel |
2093 |
Towards more accurate bioimaging of drug nanocarriers: turning aggregation-caused quenching into a useful tool
|
Qi, Jianping |
|
|
82-83 |
C |
p. 206-225 |
artikel |
2094 |
Towards more tolerable subcutaneous administration: Review of contributing factors for improving combination product design
|
Mathias, Neil |
|
|
82-83 |
C |
p. |
artikel |
2095 |
Towards single cell encapsulation for precision biology and medicine
|
Gupta, Prerak |
|
|
82-83 |
C |
p. |
artikel |
2096 |
Toxins and derivatives in molecular pharmaceutics: Drug delivery and targeted therapy
|
Zhan, Changyou |
|
2015 |
82-83 |
C |
p. 101-118 18 p. |
artikel |
2097 |
Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health
|
Zhang, Jing |
|
|
82-83 |
C |
p. |
artikel |
2098 |
Trans-corneal drug delivery strategies in the treatment of ocular diseases
|
Li, Liping |
|
|
82-83 |
C |
p. |
artikel |
2099 |
Transcytosis-enabled active extravasation of tumor nanomedicine
|
Zhou, Quan |
|
|
82-83 |
C |
p. |
artikel |
2100 |
Transdermal drug delivery via microneedles to mediate wound microenvironment
|
Mo, Ran |
|
|
82-83 |
C |
p. |
artikel |
2101 |
Transdermal immunomodulation: Principles, advances and perspectives
|
Zhao, Zongmin |
|
|
82-83 |
C |
p. 3-19 |
artikel |
2102 |
Transflammation: Innate immune signaling in nuclear reprogramming
|
Meng, Shu |
|
2017 |
82-83 |
C |
p. 133-141 |
artikel |
2103 |
Transflammation in tissue regeneration and response to injury: How cell-autonomous inflammatory signaling mediates cell plasticity
|
Cooke, John P. |
|
|
82-83 |
C |
p. |
artikel |
2104 |
Transformable vesicles for cancer immunotherapy
|
Wang, Shuang |
|
|
82-83 |
C |
p. |
artikel |
2105 |
Transforming nanomedicine manufacturing toward Quality by Design and microfluidics
|
Colombo, Stefano |
|
2018 |
82-83 |
C |
p. 115-131 |
artikel |
2106 |
Translating a radiolabeled imaging agent to the clinic
|
Griffiths, Gary L. |
|
|
82-83 |
C |
p. |
artikel |
2107 |
Translating complexity and heterogeneity of pancreatic tumor: 3D in vitro to in vivo models
|
Heinrich, Marcel A. |
|
|
82-83 |
C |
p. 265-293 |
artikel |
2108 |
Translating 3D printed pharmaceuticals: From hype to real-world clinical applications
|
Seoane-Viaño, Iria |
|
|
82-83 |
C |
p. 553-575 |
artikel |
2109 |
Translating ultrasound-mediated drug delivery technologies for CNS applications
|
Perolina, Ederlyn |
|
|
82-83 |
C |
p. |
artikel |
2110 |
Translational challenges in advancing regenerative therapy for treating neurological disorders using nanotechnology
|
Nemeth, C.L. |
|
|
82-83 |
C |
p. 60-67 |
artikel |
2111 |
Translational considerations in nanomedicine: The oncology perspective
|
Gabizon, Alberto A. |
|
|
82-83 |
C |
p. 140-157 |
artikel |
2112 |
Translational drug delivery: Time to be Frank for future success
|
Venditto, Vincent J. |
|
|
82-83 |
C |
p. |
artikel |
2113 |
Translational oncotargets for immunotherapy: From pet dogs to humans
|
Mestrinho, Lisa A. |
|
|
82-83 |
C |
p. 296-313 |
artikel |
2114 |
Translation of cell therapies to treat autoimmune disorders
|
Mehta, Jinal M. |
|
|
82-83 |
C |
p. |
artikel |
2115 |
Transmucosal drug administration as an alternative route in palliative and end-of-life care during the COVID-19 pandemic
|
Lam, Jenny K.W. |
|
|
82-83 |
C |
p. 234-243 |
artikel |
2116 |
Treating allergies via skin – Recent advances in cutaneous allergen immunotherapy
|
Nesovic, Lazar D. |
|
|
82-83 |
C |
p. |
artikel |
2117 |
Trends and patterns in cancer nanotechnology research: A survey of NCI's caNanoLab and nanotechnology characterization laboratory
|
Ke, Weina |
|
|
82-83 |
C |
p. |
artikel |
2118 |
Trends in versatile 2D (sheet/paper-like) nanomaterials for biomedical applications
|
Kankala, Ranjith Kumar |
|
|
82-83 |
C |
p. |
artikel |
2119 |
Triggering antitumoural drug release and gene expression by magnetic hyperthermia
|
Moros, María |
|
2019 |
82-83 |
C |
p. 326-343 |
artikel |
2120 |
Tumor-activated carrier-free prodrug nanoparticles for targeted cancer Immunotherapy: Preclinical evidence for safe and effective drug delivery
|
Kyu Shim, Man |
|
|
82-83 |
C |
p. |
artikel |
2121 |
Tumor associated macrophage and microbe: The potential targets of tumor vaccine delivery
|
Jiang, Jipeng |
|
|
82-83 |
C |
p. |
artikel |
2122 |
Tumor microenvironment remodeling-based penetration strategies to amplify nanodrug accessibility to tumor parenchyma
|
Liu, Yanhong |
|
|
82-83 |
C |
p. 80-103 |
artikel |
2123 |
Tumor microenvironment-responsive dynamic inorganic nanoassemblies for cancer imaging and treatment
|
Yang, Yu |
|
|
82-83 |
C |
p. |
artikel |
2124 |
Tumor-on-chip modeling of organ-specific cancer and metastasis
|
Del Piccolo, Nuala |
|
|
82-83 |
C |
p. |
artikel |
2125 |
Tumor penetrating peptides for improved drug delivery
|
Ruoslahti, Erkki |
|
2017 |
82-83 |
C |
p. 3-12 10 p. |
artikel |
2126 |
Tumor-targeting peptides from combinatorial libraries
|
Liu, Ruiwu |
|
2017 |
82-83 |
C |
p. 13-37 25 p. |
artikel |
2127 |
Tumor targeting via EPR: Strategies to enhance patient responses
|
Golombek, Susanne K. |
|
2018 |
82-83 |
C |
p. 17-38 |
artikel |
2128 |
Tumour extravasation of nanomedicine: The EPR and alternative pathways
|
Shen, Youqing |
|
|
82-83 |
C |
p. |
artikel |
2129 |
Turning Nature’s own processes into design strategies for living bone implant biomanufacturing: a decade of Developmental Engineering
|
Papantoniou, Ioannis |
|
|
82-83 |
C |
p. 22-39 |
artikel |
2130 |
Two-Dimensional Nanomaterial-based catalytic Medicine: Theories, advanced catalyst and system design
|
Zeng, Weiwei |
|
|
82-83 |
C |
p. |
artikel |
2131 |
Two-dimensional nanomaterials for tumor microenvironment modulation and anticancer therapy
|
Wu, Miaomiao |
|
|
82-83 |
C |
p. |
artikel |
2132 |
Two-step polymer- and liposome-enzyme prodrug therapies for cancer: PDEPT and PELT concepts and future perspectives
|
Scomparin, Anna |
|
2017 |
82-83 |
C |
p. 52-64 |
artikel |
2133 |
Type 1 diabetes and engineering enhanced islet transplantation
|
Jeyagaran, Abiramy |
|
|
82-83 |
C |
p. |
artikel |
2134 |
Ultrasmall silica nanoparticles in translational biomedical research: Overview and outlook
|
Singh, Neetu |
|
|
82-83 |
C |
p. |
artikel |
2135 |
Ultrasonic particles: An approach for targeted gene delivery
|
Walsh, Aidan P.G. |
|
|
82-83 |
C |
p. |
artikel |
2136 |
Ultrasound-activatable and skin-associated minimally invasive microdevices for smart drug delivery and diagnosis
|
Zeng, Qi |
|
|
82-83 |
C |
p. |
artikel |
2137 |
Ultrasound activated probe for disease imaging and therapy In-Vivo
|
Liu, Xing |
|
|
82-83 |
C |
p. |
artikel |
2138 |
Ultrasound and microbubbles to beat barriers in tumors: Improving delivery of nanomedicine
|
Snipstad, Sofie |
|
|
82-83 |
C |
p. |
artikel |
2139 |
Ultrasound assisted drug delivery
|
Moonen, Chrit |
|
2014 |
82-83 |
C |
p. 1-2 2 p. |
artikel |
2140 |
Ultrasound induced cancer immunotherapy
|
Unga, Johan |
|
2014 |
82-83 |
C |
p. 144-153 10 p. |
artikel |
2141 |
Ultrasound-mediated blood–brain barrier disruption for targeted drug delivery in the central nervous system
|
Aryal, Muna |
|
2014 |
82-83 |
C |
p. 94-109 16 p. |
artikel |
2142 |
Ultrasound-mediated blood–brain barrier opening: An effective drug delivery system for theranostics of brain diseases
|
Wang, Jieqiong |
|
|
82-83 |
C |
p. |
artikel |
2143 |
Ultrasound mediated transdermal drug delivery
|
Azagury, Aharon |
|
2014 |
82-83 |
C |
p. 127-143 17 p. |
artikel |
2144 |
Ultrasound-nanovesicles interplay for theranostics
|
Liu, Jingyi |
|
|
82-83 |
C |
p. |
artikel |
2145 |
Ultrasound-responsive microbubbles and nanodroplets: A pathway to targeted drug delivery
|
Shakya, Gazendra |
|
|
82-83 |
C |
p. |
artikel |
2146 |
Ultrasound robotics for precision therapy
|
Del Campo Fonseca, Alexia |
|
|
82-83 |
C |
p. |
artikel |
2147 |
Ultrasound triggered organic mechanoluminescence materials
|
Wang, Wenliang |
|
|
82-83 |
C |
p. |
artikel |
2148 |
Understanding and improving cellular immunotherapies against cancer: From cell-manufacturing to tumor-immune models
|
Ringquist, Rachel |
|
|
82-83 |
C |
p. |
artikel |
2149 |
Understanding interactions between biomolecules and two-dimensional nanomaterials using in silico microscopes
|
Chen, Serena H. |
|
|
82-83 |
C |
p. |
artikel |
2150 |
Understanding molecular mechanisms of biologics drug delivery and stability from NMR spectroscopy
|
Phyo, Pyae |
|
|
82-83 |
C |
p. 1-29 |
artikel |
2151 |
Understanding the bidirectional interactions between two-dimensional materials, microorganisms, and the immune system
|
Peng, Guotao |
|
|
82-83 |
C |
p. |
artikel |
2152 |
Understanding the Challenge of Beyond-Rule-of-5 Compounds
|
Bergström, Christel A.S. |
|
2016 |
82-83 |
C |
p. 1-5 5 p. |
artikel |
2153 |
Understanding the interactions between inorganic-based nanomaterials and biological membranes
|
Kang, Yiyuan |
|
|
82-83 |
C |
p. |
artikel |
2154 |
Understanding the neurovascular unit at multiple scales: Advantages and limitations of multi-photon and functional ultrasound imaging
|
Urban, Alan |
|
2017 |
82-83 |
C |
p. 73-100 |
artikel |
2155 |
Understanding ultrasound induced sonoporation: Definitions and underlying mechanisms
|
Lentacker, I. |
|
2014 |
82-83 |
C |
p. 49-64 16 p. |
artikel |
2156 |
Unignored intracellular journey and biomedical applications of extracellular vesicles
|
Zhao, Jiuhong |
|
|
82-83 |
C |
p. |
artikel |
2157 |
Unintended and in situ amorphisation of pharmaceuticals
|
Priemel, P.A. |
|
2016 |
82-83 |
C |
p. 126-132 7 p. |
artikel |
2158 |
Unintended effects of drug carriers: Big issues of small particles
|
Parhiz, Hamideh |
|
2018 |
82-83 |
C |
p. 90-112 |
artikel |
2159 |
Unlocking the full potential of lipid-based formulations using lipophilic salt/ionic liquid forms
|
Williams, Hywel D. |
|
2019 |
82-83 |
C |
p. 75-90 |
artikel |
2160 |
Unlocking the Mitochondria for Nanomedicine-based Treatments: Overcoming Biological Barriers, Improving Designs, and Selecting Verification Techniques
|
Pegoraro, Camilla |
|
|
82-83 |
C |
p. |
artikel |
2161 |
Unraveling the in vivo fate and cellular pharmacokinetics of drug nanocarriers
|
Wu, Wei |
|
|
82-83 |
C |
p. 1-2 |
artikel |
2162 |
Upconversion nanomaterials and delivery systems for smart photonic medicines and healthcare devices
|
Lee, Gibum |
|
|
82-83 |
C |
p. |
artikel |
2163 |
Up-to-date molecular medicine strategies for management of ocular surface neovascularization
|
Yang, Yunlong |
|
|
82-83 |
C |
p. |
artikel |
2164 |
Use of nano engineered approaches to overcome the stromal barrier in pancreatic cancer
|
Meng, Huan |
|
2018 |
82-83 |
C |
p. 50-57 |
artikel |
2165 |
Use of phage therapy to treat long-standing, persistent, or chronic bacterial infections
|
Abedon, Stephen T. |
|
2019 |
82-83 |
C |
p. 18-39 |
artikel |
2166 |
Use of plant viruses and virus-like particles for the creation of novel vaccines
|
Balke, Ina |
|
2019 |
82-83 |
C |
p. 119-129 |
artikel |
2167 |
Using artificial microRNA sponges to achieve microRNA loss-of-function in cancer cells
|
Tay, Felix Chang |
|
2015 |
82-83 |
C |
p. 117-127 11 p. |
artikel |
2168 |
Using bugs as drugs: Administration of bacteria-related microbes to fight cancer
|
Wang, Jiawei |
|
|
82-83 |
C |
p. |
artikel |
2169 |
Using skin for drug delivery and diagnosis in the critically ill
|
Liu, Xin |
|
2014 |
82-83 |
C |
p. 40-49 10 p. |
artikel |
2170 |
Utilizing microphysiological systems and induced pluripotent stem cells for disease modeling: a case study for blood brain barrier research in a pharmaceutical setting
|
Fabre, Kristin M. |
|
2019 |
82-83 |
C |
p. 129-135 |
artikel |
2171 |
Vaccine delivery systems toward lymph nodes
|
Ding, Yingyue |
|
|
82-83 |
C |
p. |
artikel |
2172 |
Vaccine formulations in clinical development for the prevention of severe acute respiratory syndrome coronavirus 2 infection
|
Batty, Cole J. |
|
|
82-83 |
C |
p. 168-189 |
artikel |
2173 |
Vaccines for immune tolerance against autoimmune disease
|
Kim, April |
|
|
82-83 |
C |
p. |
artikel |
2174 |
Vaginal delivery of vaccines
|
VanBenschoten, Hannah M. |
|
|
82-83 |
C |
p. |
artikel |
2175 |
Vaginal drug delivery approaches for localized management of cervical cancer
|
Wang, Xue |
|
|
82-83 |
C |
p. 114-126 |
artikel |
2176 |
Vaginal drug distribution modeling
|
Katz, David F. |
|
2015 |
82-83 |
C |
p. 2-13 12 p. |
artikel |
2177 |
Vaginal gene therapy
|
Rodríguez-Gascón, Alicia |
|
2015 |
82-83 |
C |
p. 71-83 13 p. |
artikel |
2178 |
Variations in gastrointestinal lipases, pH and bile acid levels with food intake, age and diseases: Possible impact on oral lipid-based drug delivery systems
|
Amara, Sawsan |
|
2019 |
82-83 |
C |
p. 3-15 |
artikel |
2179 |
Vascularization strategies of engineered tissues and their application in cardiac regeneration
|
Sun, Xuetao |
|
2016 |
82-83 |
C |
p. 183-194 12 p. |
artikel |
2180 |
Vascular targeting of nanoparticles for molecular imaging of diseased endothelium
|
Atukorale, Prabhani U. |
|
2017 |
82-83 |
C |
p. 141-156 16 p. |
artikel |
2181 |
Vasculature organotropism in drug delivery
|
Amruta, A |
|
|
82-83 |
C |
p. |
artikel |
2182 |
Versatility on demand – The case for semi-solid micro-extrusion in pharmaceutics
|
Rahman, Jhinuk |
|
|
82-83 |
C |
p. 104-126 |
artikel |
2183 |
Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications
|
Chung, Young Hun |
|
|
82-83 |
C |
p. 214-235 |
artikel |
2184 |
Virus integration and genome influence in approaches to stem cell based therapy for andro-urology
|
Li, Longkun |
|
2015 |
82-83 |
C |
p. 12-21 10 p. |
artikel |
2185 |
Visualizing and quantifying antimicrobial drug distribution in tissue
|
Kuzma, Benjamin A. |
|
|
82-83 |
C |
p. |
artikel |
2186 |
Visualizing kinetics of diffusional penetration in tissues using OCT-based strain imaging
|
Alexandrovskaya, Y.M. |
|
|
82-83 |
C |
p. |
artikel |
2187 |
When barriers ignore the “rule-of-five”
|
Krämer, Stefanie D. |
|
2016 |
82-83 |
C |
p. 62-74 13 p. |
artikel |
2188 |
When imaging meets size-transformable nanosystems
|
Zhou, Yang |
|
|
82-83 |
C |
p. |
artikel |
2189 |
When liposomes met antibodies: Drug delivery and beyond
|
Di, Jiaxing |
|
|
82-83 |
C |
p. 151-162 |
artikel |
2190 |
Why nanoparticles prefer liver macrophage cell uptake in vivo
|
Ngo, Wayne |
|
|
82-83 |
C |
p. |
artikel |
2191 |
Why traditional herbal medicine promotes wound healing: Research from immune response, wound microbiome to controlled delivery
|
Xu, Zeyu |
|
|
82-83 |
C |
p. |
artikel |
2192 |
Will dapivirine redeem the promises of anti-HIV microbicides? Overview of product design and clinical testing
|
das Neves, José |
|
|
82-83 |
C |
p. 20-32 |
artikel |
2193 |
Women-specific routes of administration for drugs: A critical overview
|
das Neves, José |
|
|
82-83 |
C |
p. |
artikel |
2194 |
Women’s preferences and acceptance for different drug delivery routes and products
|
Palmeira-de-Oliveira, Rita |
|
|
82-83 |
C |
p. |
artikel |
2195 |
Wound healing and fibrosis – State of play
|
Korntner, Stefanie |
|
2019 |
82-83 |
C |
p. 1-2 |
artikel |
2196 |
Wound healing and scar wars
|
Pugliese, Eugenia |
|
|
82-83 |
C |
p. 1-3 |
artikel |
2197 |
Wound healing in the eye: Therapeutic prospects
|
Ziaei, Mohammed |
|
2018 |
82-83 |
C |
p. 162-176 |
artikel |
2198 |
Wound healing in urology
|
Ninan, Neethu |
|
2015 |
82-83 |
C |
p. 93-105 13 p. |
artikel |
2199 |
Wound healing related agents: Ongoing research and perspectives
|
Kaplani, Konstantina |
|
|
82-83 |
C |
p. 242-253 |
artikel |
2200 |
Xenobiotic transporters and kidney injury
|
George, Blessy |
|
2017 |
82-83 |
C |
p. 73-91 19 p. |
artikel |
2201 |
50years of oral lipid-based formulations: Provenance, progress and future perspectives
|
Feeney, Orlagh M. |
|
2016 |
82-83 |
C |
p. 167-194 28 p. |
artikel |
2202 |
Zebrafish as a preclinical in vivo screening model for nanomedicines
|
Sieber, Sandro |
|
|
82-83 |
C |
p. 152-168 |
artikel |
2203 |
Zebrafish as a preclinical model for Extracellular Vesicle-based therapeutic development
|
Androuin, Alexandre |
|
|
82-83 |
C |
p. |
artikel |
2204 |
Zero-dimensional, one-dimensional, two-dimensional and three-dimensional biomaterials for cell fate regulation
|
Zhang, Can |
|
2018 |
82-83 |
C |
p. 33-56 |
artikel |