nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
Acknowledgement of Reviewers 2020
|
|
|
|
153 |
C |
p. I |
artikel |
2 |
ADC measurements on the Unity MR-linac – A recommendation on behalf of the Elekta Unity MR-linac consortium
|
Kooreman, Ernst S. |
|
|
153 |
C |
p. 106-113 |
artikel |
3 |
A deep learning approach to generate synthetic CT in low field MR-guided adaptive radiotherapy for abdominal and pelvic cases
|
Cusumano, Davide |
|
|
153 |
C |
p. 205-212 |
artikel |
4 |
A multi-institutional assessment of COVID-19-related risk in radiation oncology
|
Viscariello, Natalie |
|
|
153 |
C |
p. 296-302 |
artikel |
5 |
Analysis of cardiac substructure dose in a large, multi-centre danish breast cancer cohort (the DBCG HYPO trial): Trends and predictive modelling
|
Finnegan, Robert |
|
|
153 |
C |
p. 130-138 |
artikel |
6 |
A physicochemical model of reaction kinetics supports peroxyl radical recombination as the main determinant of the FLASH effect
|
Labarbe, Rudi |
|
|
153 |
C |
p. 303-310 |
artikel |
7 |
Beam data modeling of linear accelerators (linacs) through machine learning and its potential applications in fast and robust linac commissioning and quality assurance
|
Zhao, Wei |
|
|
153 |
C |
p. 122-129 |
artikel |
8 |
Beginnings, endings, histories and horizons
|
Thwaites, David |
|
|
153 |
C |
p. 1-4 |
artikel |
9 |
Clarifications on our review on estimating dose delivery accuracy in stereotactic body radiation therapy: A review of in-vivo measurement methods: In response to the letter of Kos
|
Esposito, Marco |
|
|
153 |
C |
p. 320-321 |
artikel |
10 |
Clinical evaluation of atlas- and deep learning-based automatic segmentation of multiple organs and clinical target volumes for breast cancer
|
Choi, Min Seo |
|
|
153 |
C |
p. 139-145 |
artikel |
11 |
Clinical paradigms and challenges in surface guided radiation therapy: Where do we go from here?
|
Batista, Vania |
|
|
153 |
C |
p. 34-42 |
artikel |
12 |
Contents
|
|
|
|
153 |
C |
p. iii-iv |
artikel |
13 |
Deep learning-based synthetic CT generation for paediatric brain MR-only photon and proton radiotherapy
|
Maspero, Matteo |
|
|
153 |
C |
p. 197-204 |
artikel |
14 |
Deep learning-enabled MRI-only photon and proton therapy treatment planning for paediatric abdominal tumours
|
Florkow, Mateusz C. |
|
|
153 |
C |
p. 220-227 |
artikel |
15 |
Deep learning for elective neck delineation: More consistent and time efficient
|
van der Veen, J. |
|
|
153 |
C |
p. 180-188 |
artikel |
16 |
Development and validation of a deep learning algorithm for auto-delineation of clinical target volume and organs at risk in cervical cancer radiotherapy
|
Liu, Zhikai |
|
|
153 |
C |
p. 172-179 |
artikel |
17 |
Development and validation of an age-scalable cardiac model with substructures for dosimetry in late-effects studies of childhood cancer survivors
|
Shrestha, Suman |
|
|
153 |
C |
p. 163-171 |
artikel |
18 |
Dose-averaged linear energy transfer per se does not correlate with late rectal complications in carbon-ion radiotherapy
|
Okonogi, Noriyuki |
|
|
153 |
C |
p. 272-278 |
artikel |
19 |
Dose prediction with deep learning for prostate cancer radiation therapy: Model adaptation to different treatment planning practices
|
Kandalan, Roya Norouzi |
|
|
153 |
C |
p. 228-235 |
artikel |
20 |
Dose-response relationships for radiation-related heart disease: Impact of uncertainties in cardiac dose reconstruction
|
Ntentas, Georgios |
|
|
153 |
C |
p. 155-162 |
artikel |
21 |
Editorial Board
|
|
|
|
153 |
C |
p. ii |
artikel |
22 |
From multisource data to clinical decision aids in radiation oncology: The need for a clinical data science community
|
Kazmierska, Joanna |
|
|
153 |
C |
p. 43-54 |
artikel |
23 |
Grand challenges for medical physics in radiation oncology
|
Fiorino, Claudio |
|
|
153 |
C |
p. 7-14 |
artikel |
24 |
Identification of treatment error types for lung cancer patients using convolutional neural networks and EPID dosimetry
|
Wolfs, Cecile J.A. |
|
|
153 |
C |
p. 243-249 |
artikel |
25 |
Improvement of prediction and classification performance for gamma passing rate by using plan complexity and dosiomics features
|
Hirashima, Hideaki |
|
|
153 |
C |
p. 250-257 |
artikel |
26 |
Letter to the editor of radiotherapy and oncology regarding the article esposito et al: Estimating dose delivery accuracy in stereotactic body radiation therapy: A review of in-vivo measurement methods
|
Kos, Sandra |
|
|
153 |
C |
p. 319 |
artikel |
27 |
Low dose radiation therapy for COVID-19: Effective dose and estimation of cancer risk
|
García-Hernández, Trinitat |
|
|
153 |
C |
p. 289-295 |
artikel |
28 |
MetNet: Computer-aided segmentation of brain metastases in post-contrast T1-weighted magnetic resonance imaging
|
Zhou, Zijian |
|
|
153 |
C |
p. 189-196 |
artikel |
29 |
Multivariate normal tissue complication probability models for rectal and bladder morbidity in prostate cancer patients treated with proton therapy
|
Pedersen, Jesper |
|
|
153 |
C |
p. 279-288 |
artikel |
30 |
Non-invasive imaging prediction of tumor hypoxia: A novel developed and externally validated CT and FDG-PET-based radiomic signatures
|
Sanduleanu, Sebastian |
|
|
153 |
C |
p. 97-105 |
artikel |
31 |
Optimization and auto-segmentation of a high risk cardiac zone for heart sparing in breast cancer radiotherapy
|
Loap, Pierre |
|
|
153 |
C |
p. 146-154 |
artikel |
32 |
Overview of artificial intelligence-based applications in radiotherapy: Recommendations for implementation and quality assurance
|
Vandewinckele, Liesbeth |
|
|
153 |
C |
p. 55-66 |
artikel |
33 |
Patterns of practice for adaptive and real-time radiation therapy (POP-ART RT) part I: Intra-fraction breathing motion management
|
Anastasi, Gail |
|
|
153 |
C |
p. 79-87 |
artikel |
34 |
Patterns of practice for adaptive and real-time radiation therapy (POP-ART RT) part II: Offline and online plan adaption for interfractional changes
|
Bertholet, Jenny |
|
|
153 |
C |
p. 88-96 |
artikel |
35 |
Phantom-based quality assurance for multicenter quantitative MRI in locally advanced cervical cancer
|
van Houdt, Petra J. |
|
|
153 |
C |
p. 114-121 |
artikel |
36 |
Radiotherapy Treatment plannINg study Guidelines (RATING): A framework for setting up and reporting on scientific treatment planning studies
|
Hansen, Christian Rønn |
|
|
153 |
C |
p. 67-78 |
artikel |
37 |
RealDRR – Rendering of realistic digitally reconstructed radiographs using locally trained image-to-image translation
|
Dhont, Jennifer |
|
|
153 |
C |
p. 213-219 |
artikel |
38 |
Surface guided motion management in glottic larynx stereotactic body radiation therapy
|
Zhao, Bo |
|
|
153 |
C |
p. 236-242 |
artikel |
39 |
The gimbaled-head radiotherapy system: Rise and downfall of a dedicated system for dynamic tumor tracking with real-time monitoring and dynamic WaveArc
|
Hiraoka, Masahiro |
|
|
153 |
C |
p. 311-318 |
artikel |
40 |
The relative biological effectiveness of carbon ion radiation therapy for early stage lung cancer
|
Jeong, Jeho |
|
|
153 |
C |
p. 265-271 |
artikel |
41 |
The role of computational methods for automating and improving clinical target volume definition
|
Unkelbach, Jan |
|
|
153 |
C |
p. 15-25 |
artikel |
42 |
Training and validation of a robust PET radiomic-based index to predict distant-relapse-free-survival after radio-chemotherapy for locally advanced pancreatic cancer
|
Mori, Martina |
|
|
153 |
C |
p. 258-264 |
artikel |
43 |
Tribute to David Thwaites
|
Georg, Dietmar |
|
|
153 |
C |
p. 5-6 |
artikel |
44 |
What is plan quality in radiotherapy? The importance of evaluating dose metrics, complexity, and robustness of treatment plans
|
Hernandez, Victor |
|
|
153 |
C |
p. 26-33 |
artikel |