nr |
titel |
auteur |
tijdschrift |
jaar |
jaarg. |
afl. |
pagina('s) |
type |
1 |
A hierarchical and regional deep learning architecture for image description generation
|
Kinghorn, Philip |
|
2019 |
119 |
C |
p. 77-85 |
artikel |
2 |
A multi-stream convolutional neural network for sEMG-based gesture recognition in muscle-computer interface
|
Wei, Wentao |
|
2019 |
119 |
C |
p. 131-138 |
artikel |
3 |
Are you eligible? Predicting adulthood from face images via Class Specific Mean Autoencoder
|
Singh, Maneet |
|
2019 |
119 |
C |
p. 121-130 |
artikel |
4 |
Automatic labeling of large amounts of handwritten characters with gate-guided dynamic deep learning
|
Liu, Yuliang |
|
2019 |
119 |
C |
p. 94-102 |
artikel |
5 |
Boosting deep attribute learning via support vector regression for fast moving crowd counting
|
Wei, Xinlei |
|
2019 |
119 |
C |
p. 12-23 |
artikel |
6 |
Combining global and minutia deep features for partial high-resolution fingerprint matching
|
Zhang, Fandong |
|
2019 |
119 |
C |
p. 139-147 |
artikel |
7 |
Convolutional low-resolution fine-grained classification
|
Cai, Dingding |
|
2019 |
119 |
C |
p. 166-171 |
artikel |
8 |
Deep contour and symmetry scored object proposal
|
Ke, Wei |
|
2019 |
119 |
C |
p. 172-179 |
artikel |
9 |
Deep feature representation based on privileged knowledge transfer
|
Duan, Lijuan |
|
2019 |
119 |
C |
p. 62-70 |
artikel |
10 |
Deep Learning for Pattern Recognition
|
Zhang, Zhaoxiang |
|
2019 |
119 |
C |
p. 1-2 |
artikel |
11 |
Deep learning for sensor-based activity recognition: A survey
|
Wang, Jindong |
|
2019 |
119 |
C |
p. 3-11 |
artikel |
12 |
Deep neural networks for record counting in historical handwritten documents
|
Capobianco, Samuele |
|
2019 |
119 |
C |
p. 103-111 |
artikel |
13 |
Deep spatial-temporal feature fusion for facial expression recognition in static images
|
Sun, Ning |
|
2019 |
119 |
C |
p. 49-61 |
artikel |
14 |
D-STC: Deep learning with spatio-temporal constraints for train drivers detection from videos
|
Xu, Mingliang |
|
2019 |
119 |
C |
p. 222-228 |
artikel |
15 |
Editorial Board
|
|
|
2019 |
119 |
C |
p. ii |
artikel |
16 |
Fast cascade face detection with pyramid network
|
Zeng, Dan |
|
2019 |
119 |
C |
p. 180-186 |
artikel |
17 |
FAST: Facilitated and Accurate Scene Text Proposals through FCN Guided Pruning
|
Bazazian, Dena |
|
2019 |
119 |
C |
p. 112-120 |
artikel |
18 |
Finger vein identification using Convolutional Neural Network and supervised discrete hashing
|
Xie, Cihui |
|
2019 |
119 |
C |
p. 148-156 |
artikel |
19 |
Generative adversarial dehaze mapping nets
|
Li, Ce |
|
2019 |
119 |
C |
p. 238-244 |
artikel |
20 |
Hierarchical recurrent highway networks
|
Zia, Tehseen |
|
2019 |
119 |
C |
p. 71-76 |
artikel |
21 |
Image Caption Generation with Part of Speech Guidance
|
He, Xinwei |
|
2019 |
119 |
C |
p. 229-237 |
artikel |
22 |
Integrating segmentation with deep learning for enhanced classification of epithelial and stromal tissues in H&E images
|
Al-Milaji, Zahraa |
|
2019 |
119 |
C |
p. 214-221 |
artikel |
23 |
Large-scale gesture recognition with a fusion of RGB-D data based on optical flow and the C3D model
|
Li, Yunan |
|
2019 |
119 |
C |
p. 187-194 |
artikel |
24 |
Learning domain-invariant feature for robust depth-image-based 3D shape retrieval
|
Zhu, Jing |
|
2019 |
119 |
C |
p. 24-33 |
artikel |
25 |
Motion-blur kernel size estimation via learning a convolutional neural network
|
Li, Lerenhan |
|
2019 |
119 |
C |
p. 86-93 |
artikel |
26 |
Residual Codean Autoencoder for Facial Attribute Analysis
|
Sethi, Akshay |
|
2019 |
119 |
C |
p. 157-165 |
artikel |
27 |
Simple very deep convolutional network for robust hand pose regression from a single depth image
|
Fan, Qing |
|
2019 |
119 |
C |
p. 205-213 |
artikel |
28 |
Source camera identification based on content-adaptive fusion residual networks
|
Yang, Pengpeng |
|
2019 |
119 |
C |
p. 195-204 |
artikel |
29 |
Training convolutional neural network from multi-domain contour images for 3D shape retrieval
|
Zhu, Zongxiao |
|
2019 |
119 |
C |
p. 41-48 |
artikel |
30 |
UP-CNN: Un-pooling augmented convolutional neural network
|
Xu, Chunyan |
|
2019 |
119 |
C |
p. 34-40 |
artikel |